[深度之眼机器学习训练营第四期]线性回归

基本概念

首先看一下基本的概念与符号。 x ( i ) x^{(i)} x(i)表示输入变量,也就是特征 y ( i ) y^{(i)} y(i)表示输出变量,也被称为标签目标。二者组成的元组 ( x ( i ) , y ( i ) ) (x^{(i)},y^{(i)}) (x(i),y(i))就表示一个训练样本,而 n n n个这样的训练样本就组成了训练集,即 { ( x ( i ) , y ( i ) ) ; i = 1 , ⋯   , n } \{(x^{(i)} , y^{(i)} ); i = 1, \cdots , n\} {(x(i),y(i));i=1,,n}。此外,我们使用 X \mathcal{X} X表示输入值的空间,用 Y \mathcal{Y} Y表示输出值的空间。将输入值映射到输入值的函数被称为假设(hypothesis),这些映射函数构成的集合被称为假设集,表示为 h : X ↦ Y h: \mathcal{X} \mapsto \mathcal{Y} h:XY。以线性函数为例,一个可能的假设为:
h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 h_\theta(x) = \theta_0 + \theta_{1}x_1 + \theta_2 x_2 hθ(x)=θ0+θ1x1+θ2x2
其中, θ i \theta_i θi是假设的参数(或称之为权重)。显然,对于不同的假设,其参数是不同的。

机器学习的流程就是在训练集上运行学习算法,从假设集中找到一个“好”的假设 h ∗ h^* h,以根据输入值预测输出值。如果我们需要预测的输出值是连续的,那么我们称之为回归问题;如果需要预测的值是离散的,那么就是分类问题。接下来,我们需要解决两个问题。第一个问题就是如何衡量假设的“好”与“坏”?第二个问题是怎样找到一个“好”的假设

损失函数

先来看一下第一个问题,如何衡量假设的“好”与“坏”。显然,一种直观的想法是在训练集上,预测值 h θ ( x ) h_\theta(x) hθ(x)与真实值 y y y之间的误差越小越好。因此,我们定义一个函数来衡量不同参数 θ \theta θ下每个样本的预测值 h θ ( x ( i ) ) h_\theta(x^{(i)}) hθ(x(i))和真实值 y ( i ) y^{(i)} y(i)之间的差距。这个函数就是损失函数。在回归问题中,常用的损失函数为平方误差函数:
J ( θ ) = 1 2 n ∑ i = 1 n ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta) = \frac {1}{2n} \sum_{i=1}^n \left( h_\theta (x^{(i)}) - y^{(i)} \right)^2 J(θ)=2n1i=1n(hθ(x(i))y(i))2

参数学习

我们已经知道如何度量假设的“好”与“坏”,下面就需要解决第二个问题:如何找到“好”的假设,换句话说,就是如何学习出“好”的参数 θ \theta θ。我们希望学到的参数能够使损失函数 J ( θ ) J(\theta) J(θ)最小化。下面介绍两种学习参数的方法。

梯度下降法

梯度下降是一种最优化方法。它首先将参数初始化,然后求解对应目标函数的梯度,沿着梯度下降最快的方向更新参数,直到目标函数收敛到最小值。单步更新的公式如下:
θ j ≔ θ j − α ∂ ∂ θ j J ( θ ) \theta_j \coloneqq \theta_j - \alpha\frac{\partial}{\partial\theta_j}J(\theta) θj:=θjαθjJ(θ)
其中 α \alpha α学习率,也叫做步长。实现梯度下降的关键是求解 J ( θ ) J(\theta) J(θ) θ j \theta_j θj的偏导数:
∂ ∂ θ j J ( θ ) = ∂ ∂ θ j 1 2 ( h θ ( x ) − y ) 2 = 2 ⋅ 1 2 ( h θ ( x ) − y ) ⋅ ∂ ∂ θ j ( h θ ( x ) − y ) = ( h θ ( x ) − y ) ⋅ ∂ ∂ θ j ( ∑ i = 0 d θ i x i − y ) = ( h θ ( x ) − y ) x j \begin{aligned} \frac{\partial}{\partial \theta_j} J(\theta) &= \frac{\partial}{\partial \theta_j} \frac{1}{2} (h_\theta(x) - y)^2 \\ &=2 \cdot \frac{1}{2} (h_\theta(x) - y) \cdot \frac{\partial}{\partial \theta_j} (h_\theta(x) - y) \\ &=(h_\theta(x) - y)\cdot\frac{\partial}{\partial \theta_j}\left(\sum_{i=0}^{d}\theta_i x_i - y\right)\\ &=(h_\theta(x) - y)x_j \end{aligned} θjJ(θ)=θj21(hθ(x)y)2=221(hθ(x)y)θj(hθ(x)y)=(hθ(x)y)θj(i=0dθixiy)=(hθ(x)y)xj
因此,单个训练样本的更新规则如下:
θ j ≔ θ j − α ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) , ∀ j ∈ { 0 , 1 , ⋯   , d } \theta_j \coloneqq \theta_j - \alpha\left(h_\theta(x^{(i)})-y^{(i)}\right)x_j^{(i)},\forall j\in\{0,1,\cdots,d\} θj:=θjα(hθ(x(i))y(i))xj(i),j{0,1,,d}

也可以写成:
θ ≔ θ − α ( h θ ( x ( i ) ) − y ( i ) ) x ( i ) \theta \coloneqq \theta - \alpha\left(h_\theta(x^{(i)})-y^{(i)}\right)x^{(i)} θ:=θα(hθ(x(i))y(i))x(i)

在使用梯度下降算法时,要进行特征缩放及归一化。这两步操作使所有的特征值处于相近的范围内,以保证损失函数 J ( θ ) J(\theta) J(θ)不是偏斜的。

正规方程法

因为最小化 J ( θ ) J(\theta) J(θ)是一个凸优化问题,所以 J ( θ ) J(\theta) J(θ)有全局唯一的最小值。这就意味着我们可以直接计算出该问题的解析解。

为了求解该问题,我们需要构造一个由所有训练样本组成的矩阵 X X X,矩阵的每一行表示一个训练样本,每一列表示不同的特征。这里 X X X是一个 n × ( d + 1 ) n\times (d+1) n×(d+1)维的矩阵(包含截距项):
X = [ — ( x ( 1 ) ) T — — ( x ( 2 ) ) T — ⋮ — ( x ( n ) ) T — ] X=\begin{bmatrix} —(x^{(1)})^T — \\ —(x^{(2)})^T —\\ \vdots \\ —(x^{(n)})^T— \end{bmatrix} X=(x(1))T(x(2))T(x(n))T
y ⃗ \vec{y} y 为所有真实值组成的 n n n维向量:
y ⃗ = [ y ( 1 ) y ( 2 ) ⋮ y ( n ) ] \vec{y} = \begin{bmatrix} y^{(1)}\\ y^{(2)}\\ \vdots\\ y^{(n)}\\ \end{bmatrix} y =y(1)y(2)y(n)
因为 h θ ( x ( i ) ) = ( x ( i ) ) T θ h_\theta(x^{(i)}) = (x^{(i)})^T\theta hθ(x(i))=(x(i))Tθ,其中 θ \theta θ是一个 d + 1 d+1 d+1维向量,所以有如下形式:
X θ − y ⃗ = [ ( x ( 1 ) ) T θ ⋮ ( x ( n ) ) T θ ] − [ y ( 1 ) ⋮ y ( n ) ] = [ h θ ( x ( 1 ) ) − y ( 1 ) ⋮ h θ ( x ( n ) ) − y ( n ) ] \begin{aligned} X\theta -\vec{y} &=\begin{bmatrix} (x^{(1)})^T\theta\\ \vdots\\ (x^{(n)})^T\theta\\ \end{bmatrix}-\begin{bmatrix} y^{(1)}\\ \vdots\\ y^{(n)}\\ \end{bmatrix}\\ &=\begin{bmatrix} h_\theta(x^{(1)})-y^{(1)}\\ \vdots\\ h_\theta(x^{(n)})-y^{(n)}\\ \end{bmatrix} \end{aligned} Xθy =(x(1))Tθ(x(n))Tθy(1)y(n)=hθ(x(1))y(1)hθ(x(n))y(n)
对于任意向量 z z z,我们有 z T z = ∑ i z i 2 z^Tz = \sum_{i}z_i^2 zTz=izi2。因此,可以将 J ( θ ) J(\theta) J(θ)写成矩阵形式:
J ( θ ) = 1 2 ∑ i = 1 n ( h θ ( x ( i ) ) − y ( i ) ) 2 = 1 2 ( X θ − y ⃗ ) T ( X θ − y ⃗ ) \begin{aligned} J(\theta)&= \frac{1}{2}\sum_{i=1}^{n}\left(h_\theta(x^{(i)})-y^{(i)}\right)^2\\ &=\frac{1}{2} (X\theta-\vec{y})^T(X\theta-\vec{y}) \end{aligned} J(θ)=21i=1n(hθ(x(i))y(i))2=21(Xθy )T(Xθy )
J ( θ ) J(\theta) J(θ)求导得:
∇ θ J ( θ ) = ∇ θ 1 2 ( X θ − y ⃗ ) T ( X θ − y ⃗ ) = 1 2 ( ( X θ ) T X θ − ( X θ ) T y ⃗ − y ⃗ T ( X θ ) + y ⃗ T y ⃗ ) = 1 2 ( θ T ( X T X ) θ − y ⃗ T ( X θ ) − y ⃗ T ( X θ ) ) = 1 2 ( θ T ( X T X ) θ − 2 ( y ⃗ T X ) θ ) = 1 2 ( θ T ( X T X ) θ − 2 ( X T y ⃗ ) T θ ) = 1 2 ( 2 X T X θ − 2 X T y ⃗ ) = X T X θ − X T y ⃗ \begin{aligned} \nabla_\theta J(\theta) &= \nabla_\theta \frac{1}{2}(X\theta-\vec{y})^T(X\theta-\vec{y})\\ &= \frac{1}{2}\left((X\theta)^TX\theta-(X\theta)^T\vec{y}-\vec{y}^T(X\theta)+\vec{y}^T\vec{y}\right)\\ &= \frac{1}{2}\left(\theta^T(X^TX)\theta-\vec{y}^T(X\theta)-\vec{y}^T(X\theta)\right)\\ &=\frac{1}{2}\left(\theta^T(X^TX)\theta- 2(\vec{y}^TX)\theta\right)\\ &= \frac{1}{2}\left(\theta^T(X^TX)\theta-2(X^T\vec{y})^T\theta\right)\\ &= \frac{1}{2}(2X^TX\theta-2X^T\vec{y})\\ &= X^TX\theta-X^T\vec{y} \end{aligned} θJ(θ)=θ21(Xθy )T(Xθy )=21((Xθ)TXθ(Xθ)Ty y T(Xθ)+y Ty )=21(θT(XTX)θy T(Xθ)y T(Xθ))=21(θT(XTX)θ2(y TX)θ)=21(θT(XTX)θ2(XTy )Tθ)=21(2XTXθ2XTy )=XTXθXTy
为了求解 J ( θ ) J(\theta) J(θ)的最小值,令其导数等于0,得到正规方程:
X T X θ = X T y ⃗ X^TX\theta = X^T\vec{y} XTXθ=XTy
因此, J ( θ ) J(\theta) J(θ)最小值的闭式解为:
θ = ( X T X ) − 1 X T y ⃗ \theta = (X^TX)^{-1}X^T\vec{y} θ=(XTX)1XTy

X T X X^TX XTX不可逆时,我们需要仔细检查训练集的特征,去除相关性较强的冗余特征;或者使用正则化技术。此外,还可以求解 X T X X^TX XTX的伪逆。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值