泛统计理论初探——初探机器学习的采样方法

本文介绍了机器学习中三种基本的采样方法:函数变换采样,通过变换减少高维空间采样的难度;逆变换采样,利用累积分布函数的逆函数进行采样;以及拒绝采样,通过参考分布简化采样过程。这些方法为初学者提供了理解数据分布和降低复杂性的方式,尤其在大数据时代,采样技术对于处理大规模数据至关重要。
摘要由CSDN通过智能技术生成

统计学习-简单采样算法简介

初探机器学习中基本的采样方法
    在我们的学习过程中,其实之前接触过类似采样的一些领域,比如在统计调查中的抽样调查,是抽取了一部分样本进行估计来推断总体的参数。比如在通信领域的信号提取,就用到了采样来逼近真实的信号。在机器学习过程中,也经常会遇到一些需要采样的情况,当问题的模型是比较复杂的时候,可以用采样来近似逼近或者求解;或者在最初无法了解数据的整体分布时,可以通过采样来了解数据的特征,给使用者一个大概的印象。本文中我们主要介绍几种简单的抽样方法,比如函数变换采样、逆变换采样、拒绝采样等。
    1、函数变换采样,这个方法的思路其实是利用了概率密度函数之间存在的关系,当原分布很难采集样本的时候,可以将原始分布进行变换后,对于新的分布进行采样然后通过反函数变换得到原始分布的样本。在高维空间的时候,利用这种函数变换可以减少采样的难度。
    2、逆变换采样,这种采样方法其实是上述函数变换采样的一种特殊形式,因为当变换关系是原始函数的一个累积分布函数的时候,对累积分布函数进行采样后,再进行求累积分布函数的逆函数值后可以得到原始分布的抽样。它的方法步骤如下:
    1)在均匀分布(0,1) 中随机生成一个值v
    2)计算 u=g(v) 其中g(.)函数是累积分布函数的F(.)的逆函数
    3)得到的u即是原始分布函数里的值,也就化解了原始分布函数很难抽样的问题
    3、拒绝采样,对于目标分布F(x) ,可以选取一个较为简单的,并且容易采样的参考分布G(x) ,从而对于任意的x都有该等式成立,即F(x)<=C✖G(x) 也就是找了一个简单的参考分布G&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值