在Atlas上做推理(2)-一个推理应用的基本流程

 转载自我的知乎专栏

当我们谈到推理应用的时候,一个很容易想到的场景就是:输入一个视频或视频流,进行推理,输出标注后的视频流。下面的视频是在Atlas200DK上使用yolov3+deepsort得到的结果。

freecar_out

这个应用大概分为以下几个步骤:

  1. 读取视频(流),得到H264码流
  2. 解码H264,得到一帧一帧的图片
  3. 对图片做一些预处理,比如resize
  4. 将图片传给NPU推理,得到分类结果和框
  5. 在输入图片上画框并且标注
  6. 将标注后的图片重新编码,写入视频文件或者视频流

乍一看使用OpenCV的接口组合起来就可以搭建一个推理应用了。但是在推理应用中直接使用OpenCV有不少问题:

  1. OpenCV在Atlas200DK上使用的是软件编解码,使用CPU处理1080P视频过于吃力
  2. OpenCV的画图函数不支持YUV420SP,而一般编解码器输入输出格式都是YUV420SP,使用OpenCV画图需要先将图片转到RGB格式,这也要消耗大量CPU时间
  3. OpenCV的putText函数似乎不支持中文

因为OpenCV上面的问题,所以我在demo中没有使用OpenCV,而是使用ffmpeg和freetype实现相关的功能。

demo仓库:

我的demo仓库

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
apache-atlas-2.1.0-hive-hook.tar.gz是Apache Atlas项目中的一个软件包。Apache Atlas是一个开源的数据治理和元数据框架,用于收集、集成、索引和搜索数据资产。它提供了一个统一的视图来管理企业中的所有数据资产,包括表、列、模式、实体和关系等。而apache-atlas-2.1.0-hive-hook.tar.gz是Atlas项目为了与Hive集成而提供的一个插件。 Hive是一个构建在Hadoop之上的数据仓库基础设施工具,用于处理大规模的结构化数据。它提供了类似于SQL的查询和分析功能,可以将数据批量导入、导出和查询。通过与Apache Atlas的集成,可以实现对Hive中数据资产的元数据管理和治理。 在实际的应用中,apache-atlas-2.1.0-hive-hook.tar.gz可以被部署到Hive的服务器上,并与Hive的插件机制进行集成。通过配置Hive的元数据存储URL、用户名和密码等信息,Atlas可以自动从Hive中提取元数据,并将其索引到Atlas的元数据仓库中。这样,用户可以在Atlas的界面中浏览和搜索Hive中的表、列和关系,并进行数据资产的管理和治理。 此外,apache-atlas-2.1.0-hive-hook.tar.gz还提供了一些其他功能,如基于分类标签的权限控制、数据血缘追踪、数据脱敏等。通过这些功能,用户可以更好地理解和管理Hive中的数据资产,提高数据治理的效率和质量。 总之,apache-atlas-2.1.0-hive-hook.tar.gz是Apache Atlas项目中用于与Hive集成的插件,通过它可以实现对Hive中数据资产的元数据管理和数据治理。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值