# AlexNet
论文:ImageNet classification with deep convolutional neural networks by By Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton
1. 模型:
2. 代码:
# 代码来自动手学深度学习 by 李沐
# 实现AlexNet
import torch
from d2l import torch as d2l
from torch import nn
net = nn.Sequential(nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
nn.MaxPool2d(3, stride=2),
nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
nn.MaxPool2d(3, stride=2),
nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
nn.MaxPool2d(3, stride=2),
nn.Flatten(),
nn.Linear(9600, 4096), nn.ReLU(), nn.Dropout(p=0.5),
nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5),
nn.Linear(4096, 10)
)
batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
lr, num_epochs = 0.01, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())