1481:Maximum sum(2.6基本算法之动态规划)

该博客介绍了一个寻找给定整数集合中两非交子集的最大和的算法问题,采用动态规划方法求解。给定n个整数,目标是找到两个不相交子集的元素之和的最大值。题目提供样例输入和输出,以及T测试用例,每个用例包含n个整数,绝对值不超过10000。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1481:Maximum sum

总时间限制: 1000ms 内存限制: 65536kB
描述
Given a set of n integers: A={a1, a2,…, an}, we define a function d(A) as below:
t1 t2
d(A) = max{ ∑ai + ∑aj | 1 <= s1 <= t1 < s2 <= t2 <= n }
i=s1 j=s2

Your task is to calculate d(A).
输入
The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input.
Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, …, an. (|ai| <= 10000).There is an empty line after each case.
输出
Print exactly one line for each test case. The line should contain the integer d(A).
样例输入
1

10
1 -1 2 2 3 -3 4 -4 5 -5
样例输出
13
提示
In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer.

以下是一个简单的鲸鱼算法的 Matlab 实现。在这个例子中,我们尝试最小化一个已知函数的值。请注意,这个程序只是一个示例,您需要根据自己的要求进行修改。 ```matlab function [best, fmin] = whale_algorithm(max_iter, dim, lb, ub, fobj) % Whale algorithm implementation in Matlab % Inputs: % max_iter: Maximum number of iterations % dim: Number of dimensions % lb: Lower bound of search space % ub: Upper bound of search space % fobj: Objective function to minimize % Outputs: % best: Best solution found % fmin: Best objective function value found % Initialize population pop_size = 30; X = zeros(pop_size, dim); for i = 1:pop_size X(i,:) = lb + (ub - lb) .* rand(1, dim); end % Initialize best solution fX = feval(fobj, X'); [fmin, idx] = min(fX); best = X(idx,:); % Main loop for t = 1:max_iter % Update position of whales a = 2 - t * (2 / max_iter); % Eq. (2.3) a2 = -1 + t * ((-1) / max_iter); % Eq. (2.4) for i = 1:pop_size r1 = rand(); % r1 is a random number in [0,1] r2 = rand(); % r2 is a random number in [0,1] A = 2 * a * r1 - a; % Eq. (2.1) C = 2 * r2; % Eq. (2.2) b = 1; % parameters in Eq. (2.5) l = (a2 - 1) * rand() + 1; % Eq. (2.5) p = rand(); % p in Eq. (2.6) if p < 0.5 if abs(A) >= 1 rand_leader_idx = floor(pop_size * rand() + 1); X_rand = X(rand_leader_idx, :); D_X_rand = abs(C * X_rand - X(i, :)); % Eq. (2.7) X(i, :) = X_rand - A * D_X_rand; % Eq. (2.8) else D_best = abs(C * best - X(i, :)); % Eq. (2.1) X(i, :) = best - A * D_best; % Eq. (2.3) end else distance_to_leader = abs(best - X(i, :)); X(i, :) = distance_to_leader * exp(b * l) .* cos(2 * pi * l) + best; % Eq. (2.5) end end % Apply boundary constraints X(X < lb) = lb; X(X > ub) = ub; % Update best solution fX = feval(fobj, X'); [fmin_new, idx] = min(fX); if fmin_new < fmin best = X(idx,:); fmin = fmin_new; end % Display progress disp(['Iteration ' num2str(t) ', Best objective function value = ' num2str(fmin)]); end end ``` 在这个示例中,我们定义了一个需要最小化的目标函数,并将其传递给鲸鱼算法。在每次迭代中,算法更新每个鲸鱼的位置,并根据当前位置更新最佳解决方案。算法还对搜索空间进行了边界约束,确保每个鲸鱼的位置都在定义的搜索范围内。 您可以使用以下代码来运行这个示例: ```matlab % Define objective function to minimize fobj = @(x) sum(x.^2); % Define search space bounds lb = -5; ub = 5; % Run whale algorithm max_iter = 100; dim = 10; [best, fmin] = whale_algorithm(max_iter, dim, lb, ub, fobj); ``` 在这个例子中,我们最小化了一个简单的二次函数,并将搜索空间限制在 -5 和 5 之间。您可以根据自己的需求修改这些参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值