1481:Maximum sum(2.6基本算法之动态规划)

该博客介绍了一个寻找给定整数集合中两非交子集的最大和的算法问题,采用动态规划方法求解。给定n个整数,目标是找到两个不相交子集的元素之和的最大值。题目提供样例输入和输出,以及T测试用例,每个用例包含n个整数,绝对值不超过10000。
摘要由CSDN通过智能技术生成

1481:Maximum sum

总时间限制: 1000ms 内存限制: 65536kB
描述
Given a set of n integers: A={a1, a2,…, an}, we define a function d(A) as below:
t1 t2
d(A) = max{ ∑ai + ∑aj | 1 <= s1 <= t1 < s2 <= t2 <= n }
i=s1 j=s2

Your task is to calculate d(A).
输入
The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input.
Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, …, an. (|ai| <= 10000).There is an empty line after each case.
输出
Print exactly one line for each test case. The line should contain the integer d(A).
样例输入
1

10
1 -1 2 2 3 -3 4 -4 5 -5
样例输出
13
提示
In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer.

### 回答1: 以下是一个经典的 Maximum Sum 子数组问题的动态规划代码: ```python def max_sum_subarray(nums): if not nums: return 0 n = len(nums) dp = [0]*n dp[0] = nums[0] max_sum = nums[0] for i in range(1, n): dp[i] = max(dp[i-1]+nums[i], nums[i]) max_sum = max(max_sum, dp[i]) return max_sum ``` 该算法的时间复杂度为 $O(n)$,其中 $n$ 是数组的长度。 ### 回答2: Maximum sum问题是一个经典的动态规划问题,其目标是在一个给定的数组中找到一个具有最大和的子数组。 在解决这个问题时,可以定义一个一维动态规划数组dp,其中dp[i]表示以第i个元素结尾的子数组的最大和。那么,可以得出动态规划的转移方程如下: dp[i] = max(dp[i-1] + nums[i], nums[i]) 其中,nums表示给定的整数数组。 接下来,可以使用一个变量maxSum来记录所有子数组的最大和。遍历整个数组,更新dp[i]的同时,不断更新maxSum的值,即可得到最终的结果。 下面是该问题的动态规划代码实现: ```python def maxSum(nums): dp = [0] * len(nums) maxSum = float('-inf') dp[0] = nums[0] maxSum = max(maxSum, dp[0]) for i in range(1, len(nums)): dp[i] = max(dp[i-1] + nums[i], nums[i]) maxSum = max(maxSum, dp[i]) return maxSum ``` 该算法的时间复杂度为O(n),其中n为数组的长度。使用动态规划的思想,可以高效地解决Maximum sum问题。 ### 回答3: 动态规划(Dynamic Programming)是一种常用的算法思想,可以解决一些最优化问题。Maximum Sum问题是一种经典的动态规划问题,目标是找出一个数组中最大的子数组和。 要编写Maximum Sum动态规划代码,可以按照以下步骤进行: 1. 首先定义一个变量max_sum,用于记录当前最大的子数组和,初始化为数组中的第一个元素(即max_sum = arr[0])。 2. 然后定义一个变量cur_sum,用于记录当前的子数组和,初始化为数组中的第一个元素(即cur_sum = arr[0])。 3. 接着,使用一个循环遍历数组中的每一个元素(从第二个元素开始): (1)如果当前子数组和cur_sum加上当前元素arr[i]大于当前元素arr[i]本身,说明加上当前元素后,子数组和变得更大,因此更新cur_sum为cur_sum + arr[i]。 (2)否则,当前元素arr[i]比当前子数组和cur_sum更大,说明当前元素作为新的起点,重新开始构建子数组,即令cur_sum = arr[i]。 (3)将当前子数组和cur_sum与当前最大的子数组和max_sum进行比较,如果cur_sum大于max_sum,则更新max_sum为cur_sum。 4. 最后,返回最大的子数组和max_sum作为最终结果。 下面给出这个算法的代码实现: ```python def maximum_sum(arr): max_sum = arr[0] cur_sum = arr[0] for i in range(1, len(arr)): if cur_sum + arr[i] > arr[i]: cur_sum += arr[i] else: cur_sum = arr[i] if cur_sum > max_sum: max_sum = cur_sum return max_sum ``` 这段代码的时间复杂度为O(n),其中n为数组的长度,因为需要遍历整个数组。在使用动态规划思想解决Maximum Sum问题时,可以通过定义合适的状态和状态转移方程来简化问题,并提高算法的效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值