1019. 数字黑洞 (20)
时间限制
100 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
CHEN, Yue
给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的6174,这个神奇的数字也叫Kaprekar常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意4位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个(0, 10000)区间内的正整数N。
输出格式:
如果N的4位数字全相等,则在一行内输出“N - N = 0000”;否则将计算的每一步在一行内输出,直到6174作为差出现,输出格式见样例。注意每个数字按4位数格式输出。
输入样例1:6767输出样例1:
7766 - 6677 = 1089 9810 - 0189 = 9621 9621 - 1269 = 8352 8532 - 2358 = 6174输入样例2:
2222输出样例2:
2222 - 2222 = 0000
提交代码
#include<stdio.h> #include<math.h> int max(int n); int min(int n); int main() { int n,a[5], cha; scanf("%d",&n); if(max(n)==min(n)) { printf("%.4d - %.4d = %.4d",max(n),min(n),max(n)-min(n)); return 0; } while(cha!=6174) { cha=max(n)-min(n); printf("%.4d - %.4d = %.4d\n",max(n),min(n),max(n)-min(n)); n=cha; } return 0; } int max(int n) { int i,j,k=0,a[5],max,sum=0,d,num; while(n!=0) { num=n%10; a[k++]=num; n=n/10; } for(i=k;i<4;i++) { a[i]=0; } for(i=0;i<3;i++)//4 5 6 9 8 { for(j=0;j<4-i-1;j++) { if(a[j]<a[j+1]) { max=a[j]; a[j]=a[j+1]; //6677 a[j+1]=max; //6767 } } } d=4; for(i=0;i<4;i++) { d--; sum=sum+a[i]*pow(10,d); } return sum; } int min(int n) { int i,j,k=0,a[5],min,sum=0,d,num; while(n!=0) { num=n%10; a[k++]=num; n=n/10; } for(i=k;i<4;i++) { a[i]=0; } for(i=0;i<4-1;i++)//4 5 6 9 8 { for(j=0;j<4-i-1;j++) { if(a[j]>a[j+1]) { min=a[j]; a[j]=a[j+1]; //6677 a[j+1]=min; //6767 } } } d=4; for(i=0;i<4;i++) { d--; sum=sum+a[i]*pow(10,d); } return sum; }