圣彼得堡悖论

本文探讨了由尼古拉·伯努利提出的圣彼得堡悖论,这是一种基于掷硬币游戏的概率期望值悖论。文章详细介绍了游戏规则,并通过模拟实验揭示了理论上无限大的期望值与实际收益之间的差距。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 22 15:15:13 2018

author: yunjinqi

Email:yunjinqi@qq.com

sigature:It takes significant discipline,research,diligence and patience
         to be successful at algorithmic trading.It takes months,if not years,
         to generate consistent profitability.
"""

'''
圣彼得堡悖论是数学家丹尼尔·伯努利(Daniel Bernoulli)的
表兄尼古拉·伯努利(Nicola Bernoulli)在1738提出的一个概率期望值悖论,
它来自于一种掷币游戏,即圣彼得堡游戏(表1)。
设定掷出正面或者反面为成功,游戏者如果第一次投掷成功,得奖金2元,游戏结束;
第一次若不成功,继续投掷,第二次成功得奖金4元,游戏结束;
这样,游戏者如果投掷不成功就反复继续投掷,直到成功,游戏结束。
如果第n次投掷成功,得奖金2n元,游戏结束。
按照概率期望值的计算方法,将每一个可能结果的得奖值乘以该结果发生的概率
即可得到该结果奖值的期望值。游戏的期望值即为所有可能结果的期望值之和。
随着n的增大,以后的结果虽然概率很小,但是其奖值越来越大,每一个结果的期望值均为l,
所有可能结果的得奖期望值之和,即游戏的期望值,将为“无穷大”。
按照概率的理论,多次试验的结果将会接近于其数学期望。
但是实际的投掷结果和计算都表明,多次投掷的结果,
其平均值最多也就是几十元。正如Hacking(1980)所说:“没有人愿意花25元去参加一次这样的游戏。”
这就出现了计算的期望值与实际情况的“矛盾”,问题在哪里?
实际在游戏过程中,游戏的收费应该是多少?
决策理论的期望值准则在这里还成立吗?这是不是给“期望值准则”提出了严峻的挑战?
正确认识和解决这一矛盾对于人们认识随机现象、发展决策理论和指导实际决策无疑具有重大意义。、
'''
# simulate the paradox
import pandas as pd
import numpy as np
import random
def bet_one_win_money():
    tows=[1,-1]
    times=0
    result=0
    while result!=1:
        result=random.choice(tows)
        times+=1
    return 2**times
def get_mean_money_for_many_times(n=1000):
    money=[]
    for i in range(n):
        money.append(bet_one_win_money())
    return sum(money)/len(money)
mean_money=get_mean_money_for_many_times(10000000)
print(mean_money)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云金杞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值