PID控制电机输出作为电机PWM占空比输入的理解

本文详细解释了PID控制器如何通过计算目标值与实际值的误差来调整PWM脉冲,从而控制电机速度。作者强调PID是一个负反馈闭环系统,并通过实例展示了PID参数变化对电机响应速度的影响。在电机速度控制中,PID输出的稳定值决定了PWM的占空比,该占空比与电机速度成线性关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这两天一直疑惑PID的输出怎么就能作为PWM脉冲控制电机输出呢?问了几个人也没说清楚。
我认为你能让一个初学者说明白也就说明你掌握的挺深刻,如果你说了别人还是没明白那就的得反思自己掌握的怎么样,是在自欺欺人吗?还有就是每个人擅长的领域不一样不要总说这么简单都不明白,那我只能说,我擅长的领域你可能就是个小白。
现在研究了一天终于明白了,分享给和我一样疑惑的初学者,仅代表个人理解。

1、设定PID目标值和参数,目标值为电机速度值。

set_p_i_d(1.5, 0.2, 0.0);
set_pid_target(30.0);

2、PID是一个负反馈闭环系统,这点很重要。

float PID_realize(float actual_val)
{
	/*计算目标值与实际值的误差*/
	DBG_Printf("%s: pid_target:%.2f - PID_actual:%.2f \r\n", __FUNCTION__,pid.target_val, actual_val);
	pid.err = pid.target_val - actual_val;
	
	/*积分项*/
	pid.integral += pid.err;

	DBG_Printf("%s: PID_error:%.2f - PID_sum:%.2f \r\n", __FUNCTION__,pid.err, pid.integral);
	/*PID算法实现*/
	pid.output_val = pid.Kp * pid.err + 
				     pid.Ki * pid.integral + 
				     pid.Kd * (pid.err - pid.err_last);

	/*误差传递*/
	pid.err_last = pid.err;

	/*返回当前实际值*/
	return pid.output_val;
}

3、具体反馈流程

a、首先PID算法第一步 会对目标值和实际值做一个差值计算,计算偏差之刚开始很大逐渐会变小。
b、每次的PID输出会作为电机的输入,编码器会对每次的速度进行读取,刚开始读到的速度很小,它会把这个速度值作为实际值传入PID输入这个时候PID的目标值还会和这个实际值进行比较,直到误差为0,这个过程会一直进行,只是误差为0时积分项的累加值就稳定了,微分项的差值也稳定了,比例项也稳定了。也就是PID的输出就稳定了,而这个值就是PWM的占空比,这个值是三项的和的稳定值,按我的例子来说,这个PWM占空比值稳定在400左右,它是由电机旋转过程中的负反馈值,也就是目标值30对应的占空比,具体来说就是目标值到达30,PID输出三项的累计值,要想达到这个速度就得是这个占空比,它们两是线性关系,和你设置的PID参数有直接关系。
在这里插入图片描述

c、重新设定PID目标值和参数,目标值为电机速度值。
set_p_i_d(15.0, 2.0, 0.0);
set_pid_target(30.0);
我把PID参数增大十倍,速度目标值不变,这个时候最终的PID输出的PWM占空比还是会稳定在400.相对于上一组参数,它的积分累加项正好是上一组的十分之一,但是响应速度较上一组提高10倍。
在这里插入图片描述

<think>好的,我需要帮助用户了解如何使用PID算法控制电磁阀。首先,我需要回顾PID控制的基本原理,确保自己理解正确。PID由比例、积分、微分三部分组成,通过这三个环节调节误差,这符合引用[2]中的描述。接下来,用户需要具体的实现方法示例代码,所以我要把理论转化为实际步骤。 首先,电磁阀的控制通常涉及开关信号,但PID输出的是连续量,可能需要PWM(脉宽调制)来实现模拟控制。这里需要解释如何将PID输出转换为电磁阀的动作。比如,通过调整PWM占空比控制流量或压力,这应该是一个关键点。 然后,需要考虑PLC或微控制器的编程。引用[1]提到PID功能块的输入包括设定值、过程值参数,输出控制值。所以在代码示例中,可能需要一个PID函数,定期采样反馈信号,计算输出。同时,引用[3]指出如何在特定控制器中设置PID参数,虽然用户可能使用不同的硬件,但参数调整的步骤是类似的。 接着,示例代码部分。用户可能需要伪代码或Python示例,但实际中常用的是C或PLC语言。比如,用Python模拟PID类,然后在循环中更新输出。需要确保代码结构清晰,包含基本的PID计算,并处理积分饱等问题。 最后,注意事项部分。电磁阀的响应时间、死区、以及防积分饱措施都是实际应用中容易遇到的问题,需要提醒用户。同时,参数整定方法如试凑法或齐格勒-尼克尔斯方法也应该提及。 检查引用是否正确。引用[1]关于PID功能块的输入输出,引用[2]解释PID原理,引用[3]的参数设置位置,这些都符合上下文。确保所有技术细节准确,并且示例代码合理。可能需要进一步确认电磁阀控制中的PWM使用是否常见,以及如何具体实现,但根据一般知识,这应该是可行的方案。</think>### 如何使用PID算法控制电磁阀 #### 1. PID控制基本原理 PID控制器通过比例(P)、积分(I)、微分(D)三个环节调节系统误差。其数学表达式为: $$u(t) = K_p e(t) + K_i \int_{0}^{t} e(\tau) d\tau + K_d \frac{de(t)}{dt}$$ 其中$e(t)$为设定值与实际值的误差,$u(t)$为输出控制量[^2]。 #### 2. 电磁阀控制的实现步骤 **硬件需求**: - 电磁阀(带PWM调制功能) - 传感器(如压力、流量传感器) - 控制器(PLC/单片机) - 驱动电路(H桥或继电器) **软件逻辑**: 1. 周期性采集传感器反馈值(PV) 2. 计算误差$e(t) = \text{设定值}(SP) - \text{反馈值}(PV)$ 3. 通过PID公式计算控制量$u(t)$ 4. 将$u(t)$转换为PWM占空比或开关频率控制电磁阀 #### 3. 代码示例(基于Python模拟) ```python class PIDController: def __init__(self, Kp, Ki, Kd): self.Kp = Kp self.Ki = Ki self.Kd = Kd self.integral = 0 self.prev_error = 0 def compute(self, setpoint, pv, dt): error = setpoint - pv self.integral += error * dt derivative = (error - self.prev_error) / dt output = self.Kp * error + self.Ki * self.integral + self.Kd * derivative self.prev_error = error return max(0, min(output, 100)) # 限制输出在0-100%范围 # 使用示例 pid = PIDController(Kp=2.0, Ki=0.1, Kd=0.05) setpoint = 50.0 # 目标压力值(单位根据传感器定) current_pv = 30.0 # 当前传感器读数 # 每次循环(假设时间间隔0.1秒) control_output = pid.compute(setpoint, current_pv, dt=0.1) pwm_duty = int(control_output) # 转换为PWM占空比 send_to_valve(pwm_duty) # 实际控制电磁阀的函数 ``` #### 4. PLC实现要点(基于引用[1][3]) - **功能块配置**:在控制器中调用PID功能块,输入`SP`、`PV`参数`Kp/Ki/Kd`[^1] - **参数设置**:通过菜单`Loop Gains→PID`设置参数,选择PID模式[^3] - **信号处理**: ```text [传感器信号] → [模拟量输入模块] → [PID功能块] → [PWM输出模块] → [电磁阀] ``` #### 5. 注意事项 1. **死区处理**:电磁阀存在机械死区,需设置输出阈值(如<5%占空比时不动作) 2. **防积分饱**:当误差持续较大时,限制积分项累积速度 3. **采样周期**:根据电磁阀响应时间选择(典型值100ms-1s) 4. **参数整定**:采用试凑法或齐格勒-尼克尔斯方法调整$K_p/K_i/K_d$
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值