判断一个点是否在多边形内部 - 射线法思路

本文介绍了一种利用射线法判断点是否位于多边形内的算法,并详细解析了射线法的基本原理及在实际应用中可能遇到的各种特殊情况及其解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接

判断一个点是否在多边形内部 [1] 射线法思路
判断一个点是否在多边形内部 [2] 射线法实现

比如说,我就随便涂了一个多边形和一个点,现在我要给出一种通用的方法来判断这个点是不是在多边形内部(别告诉我用肉眼观察……)。

这里写图片描述

首先想到的一个解法是从这个点做一条射线,计算它跟多边形边界的交点个数,如果交点个数为奇数,那么点在多边形内部,否则点在多边形外。

这里写图片描述

这个结论很简单,那它是怎么来的?下面就简单讲解一下。

首先,对于平面内任意闭合曲线,我们都可以直观地认为,曲线把平面分割成了内、外两部分,其中“内”就是我们所谓的多边形区域。

这里写图片描述

基于这一认识,对于平面内任意一条直线,我们可以得出下面这些结论:

直线穿越多边形边界时,有且只有两种情况:进入多边形或穿出多边形。
在不考虑非欧空间的情况下,直线不可能从内部再次进入多边形,或从外部再次穿出多边形,即连续两次穿越边界的情况必然成对。
直线可以无限延伸,而闭合曲线包围的区域是有限的,因此最后一次穿越多边形边界,一定是穿出多边形,到达外部。
这里写图片描述

现在回到我们最初的题目。假如我们从一个给定的点做射线,还可以得出下面两条结论:

如果点在多边形内部,射线第一次穿越边界一定是穿出多边形。
如果点在多边形外部,射线第一次穿越边界一定是进入多边形。
这里写图片描述

把上面这些结论综合起来,我们可以归纳出:

当射线穿越多边形边界的次数为偶数时,所有第偶数次(包括最后一次)穿越都是穿出,因此所有第奇数次(包括第一次)穿越为穿入,由此可推断点在多边形外部。 enter image description here
当射线穿越多边形边界的次数为奇数时,所有第奇数次(包括第一次和最后一次)穿越都是穿出,由此可推断点在多边形内部。 enter image description here
到这里,我们已经了解了这个解法的思路,大家可以试着自己写一个实现出来。


不知道大家思考得怎么样,有没有遇到一些不好处理的特殊情况。今天就来讲讲射线法在实际应用中的一些问题和解决方案。

1点在多边形的边上

前面我们讲到,射线法的主要思路就是计算射线穿越多边形边界的次数。那么对于点在多边形的边上这种特殊情况,射线出发的这一次,是否应该算作穿越呢?

enter image description here

看了上面的图就会发现,不管算不算穿越,都会陷入两难的境地——同样落在多边形边上的点,可能会得到相反的结果。这显然是不正确的,因此对这种特殊情况需要特殊处理。

2点和多边形的顶点重合

enter image description here

这其实是第一种情况的一个特例。

3射线经过多边形顶点

射线刚好经过多边形顶点的时候,应该算一次还是两次穿越?这种情况比前两种复杂,也是实现中的难点,后面会讲解它的解决方案。

enter image description here

4射线刚好经过多边形的一条边

这是上一种情况的特例,也就是说,射线连续经过了多边形的两个相邻顶点。

enter image description here

解决方案:

1判断点是否在线上的方法有很多,比较简单直接的就是计算点与两个多边形顶点的连线斜率是否相等,中学数学都学过。

2点和多边形顶点重合的情况更简单,直接比较点的坐标就行了。

3顶点穿越看似棘手,其实我们换一个角度,思路会大不相同。先来回答一个问题,射线穿越一条线段需要什么前提条件?没错,就是线段两个端点分别在射线两侧。只要想通这一点,顶点穿越就迎刃而解了。这样一来,我们只需要规定被射线穿越的点都算作其中一侧。

enter image description here

如上图,假如我们规定射线经过的点都属于射线以上的一侧,显然点D和发生顶点穿越的点C都位于射线Y的同一侧,所以射线Y其实并没有穿越CD这条边。而点C和点B则分别位于射线Y的两侧,所以射线Y和BC发生了穿越,由此我们可以断定点Y在多边形内。同理,射线X分别与AD和CD都发生了穿越,因此点X在多边形外,而射线Z没有和多边形发生穿越,点Z位于多边形外。

解决了第三点,这一点就毫无难度了。根据上面的假设,射线连续经过的两个顶点显然都位于射线以上的一侧,因此这种情况看作没有发生穿越就可以了。由于第三点的解决方案实际上已经覆盖到这种特例,因此不需要再做特别的处理。

射线判断是否多边形内部的基本思路是,从该向一条水平或垂直方向发射一条射线,计算该射线多边形的交个数,如果是奇数个则多边形内部,偶数个则多边形外部。 具体实现步骤如下: 1. 从该向水平方向发射一条射线,计算其与多边形各边的交; 2. 对所有交按照相对于该的极角进行排序; 3. 遍历所有交,统计位于该左侧的交个数,如果是奇数个则多边形内部,偶数个则多边形外部。 C语言代码示例: ```c #include <stdio.h> struct point { double x; double y; }; // 计算两间的距离 double distance(struct point p1, struct point p2) { double dx = p1.x - p2.x; double dy = p1.y - p2.y; return sqrt(dx*dx + dy*dy); } // 判断是否多边形内部 int is_inside_polygon(struct point p, struct point polygon[], int n) { int i, j, count = 0; struct point p1, p2; // 构造水平射线 p1.x = -10000; p1.y = p.y; p2.x = p.x; p2.y = p.y; for (i = 0; i < n; i++) { // 跳过与p重合的顶 if (distance(p, polygon[i]) < 1e-6) { return 1; } // 计算多边形每条边与水平射线的交 struct point intersect; if (i == n - 1) { p1 = polygon[i]; p2 = polygon[0]; } else { p1 = polygon[i]; p2 = polygon[i+1]; } if (p1.y == p2.y) { continue; } intersect.x = (p.y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y) + p1.x; intersect.y = p.y; // 如果交在水平射线右侧,则不计数 if (intersect.x > p.x) { continue; } // 如果交p重合,则不计数 if (distance(p, intersect) < 1e-6) { continue; } // 统计位于p左侧的交个数 if (intersect.y < p.y) { count++; } } // 如果交个数为奇数,则p在多边形内部 if (count % 2 == 1) { return 1; } else { return 0; } } int main() { struct point p = {2, 2}; struct point polygon[] = {{0, 0}, {0, 4}, {4, 4}, {4, 0}}; int n = 4; int result = is_inside_polygon(p, polygon, n); if (result) { printf("Point (%.2f, %.2f) is inside the polygon.\n", p.x, p.y); } else { printf("Point (%.2f, %.2f) is outside the polygon.\n", p.x, p.y); } return 0; } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值