数据分析课程笔记(五)常用统计法、数据和拼、索引和复合索引

本文介绍了如何使用Pandas进行数据统计,如计算平均评分和演员数量,以及数据合并方法(Join与Merge),包括基本的Join操作、按多条件分组(GroupBy)和索引技巧,展示了复合索引的应用实例。同时涵盖了数据可视化,如电影时长分布和书店销售情况的展示。
摘要由CSDN通过智能技术生成

pandas常用统计方法

在这里插入图片描述

数据来源:
https://www.kaggle.com/damianpanek/sunday-eda/data

# coding=utf-8
import pandas as pd
import numpy as np

file_path = "IMDB-Movie-Data.csv"
df = pd.read_csv(file_path)

# print(df.info())

print(df.head(1))

#获取平均评分
print(df["Rating"].mean())

#导演的人数
# print(len(set(df["Director"].tolist())))
print(len(df["Director"].unique()))

#获取演员的人数
temp_actors_list = df["Actors"].str.split(", ").tolist()
actors_list = [i for j in temp_actors_list for i in j]
actors_num = len(set(actors_list))
print(actors_num)

在这里插入图片描述
在这里插入图片描述

# coding=utf-8
import pandas as pd
from matplotlib import pyplot as plt
file_path = "./IMDB-Movie-Data.csv"

df = pd.read_csv(file_path)
# print(df.head(1))
# print(df.info())

#rating,runtime分布情况
#选择图形,直方图
#准备数据
runtime_data = df["Rating"].values

max_runtime = runtime_data.max()
min_runtime = runtime_data.min()

#计算组数
print(max_runtime-min_runtime)
num_bin = (max_runtime-min_runtime)//0.5


#设置图形的大小
plt.figure(figsize=(20,8),dpi=80)
plt.hist(runtime_data,num_bin)

_x = [min_runtime]
i = min_runtime
while i<=max_runtime+0.5:
    i = i+0.5
    _x.append(i)

plt.xticks(_x)

plt.show()

import numpy as np
from matplotlib import pyplot as plt

runtime_data = np.array([8.1, 7.0, 7.3, 7.2, 6.2, 6.1, 8.3, 6.4, 7.1, 7.0, 7.5, 7.8, 7.9, 7.7, 6.4, 6.6, 8.2, 6.7, 8.1, 8.0, 6.7, 7.9, 6.7, 6.5, 5.3, 6.8, 8.3, 4.7, 6.2, 5.9, 6.3, 7.5, 7.1, 8.0, 5.6, 7.9, 8.6, 7.6, 6.9, 7.1, 6.3, 7.5, 2.7, 7.2, 6.3, 6.7, 7.3, 5.6, 7.1, 3.7, 8.1, 5.8, 5.6, 7.2, 9.0, 7.3, 7.2, 7.4, 7.0, 7.5, 6.7, 6.8, 6.5, 4.1, 8.5, 7.7, 7.4, 8.1, 7.5, 7.2, 5.9, 7.1, 7.5, 6.8, 8.1, 7.1, 8.1, 8.3, 7.3, 5.3, 8.8, 7.9, 8.2, 8.1, 7.2, 7.0, 6.4, 7.8, 7.8, 7.4, 8.1, 7.0, 8.1, 7.1, 7.4, 7.4, 8.6, 5.8, 6.3, 8.5, 7.0, 7.0, 8.0, 7.9, 7.3, 7.7, 5.4, 6.3, 5.8, 7.7, 6.3, 8.1, 6.1, 7.7, 8.1, 5.8, 6.2, 8.8, 7.2, 7.4, 6.7, 6.7, 6.0, 7.4, 8.5, 7.5, 5.7, 6.6, 6.4, 8.0, 7.3, 6.0, 6.4, 8.5, 7.1, 7.3, 8.1, 7.3, 8.1, 7.1, 8.0, 6.2, 7.8, 8.2, 8.4, 8.1, 7.4, 7.6, 7.6, 6.2, 6.4, 7.2, 5.8, 7.6, 8.1, 4.7, 7.0, 7.4, 7.5, 7.9, 6.0, 7.0, 8.0, 6.1, 8.0, 5.2, 6.5, 7.3, 7.3, 6.8, 7.9, 7.9, 5.2, 8.0, 7.5, 6.5, 7.6, 7.0, 7.4, 7.3, 6.7, 6.8, 7.0, 5.9, 8.0, 6.0, 6.3, 6.6, 7.8, 6.3, 7.2, 5.6, 8.1, 5.8, 8.2, 6.9, 6.3, 8.1, 8.1, 6.3, 7.9, 6.5, 7.3, 7.9, 5.7, 7.8, 7.5, 7.5, 6.8, 6.7, 6.1, 5.3, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值