一、下载并配置libTorch
1、在pytorch官网下载libTorch;这里我选择的时最新版本的libTorch,如果想要旧版本,可以点击左下角的“Previous versions of PyTorch”下载想要的版本;
2、因为我需要用到GPU,提前安装了cuda11.1.0 和 cudnn11.1.0 ,所以这里的CUDA选项选择了11.0 ;
3、在红色矩形框处,点击链接下载Release版本或Debug版本的libTorch;
4、我只用到了Release版本,解压;
5、配置环境变量
一般添加环境变量都是bin目录,但是libtorch的dll全部在lib目录;
二、libTorch在cpu下运行
1、在vs(我用的vs2017)下创建新项目,在项目中配置libtorch环境(类似配置opencv);
2、配置“包含目录”、“库目录”、“附加依赖项”;
包含目录:
D:\3rd-Part\libtorch-1.7.0-cuda11.0-release\include;D:\3rd-Part\libtorch-1.7.0-cuda11.0-release\include\torch\csrc\api\include;$(IncludePath)
【
注意:包含目录中“D:\3rd-Part\libtorch-1.7.0-cuda11.0-release\include\torch\csrc\api\include”,是用于使用cuda相关的包含目录
】
库目录:
D:\3rd-Part\libtorch-1.7.0-cuda11.0-release\lib;$(LibraryPath)
附加依赖项:
asmjit.lib
c10.lib
c10_cuda.lib
c10d.lib
caffe2_detectron_ops_gpu.lib
caffe2_module_test_dynamic.lib
caffe2_nvrtc.lib
clog.lib
cpuinfo.lib
dnnl.lib
fbgemm.lib
gloo.lib
gloo_cuda.lib
libprotobuf.lib
libprotobuf-lite.lib
libprotoc.lib
mkldnn.lib
torch.lib
torch_cpu.lib
torch_cuda.lib
3、解决提醒std冲突问题
项目——属性(注意不是双击属性表,重新从项目——属性进入,属性表设置了不起作用)
属性->C/C++ ->常规->SDL检查->否
属性->C/C++ ->语言->符号模式->否
至此,环境变量配置完毕;
4、编写程序
#include <iostream>
#include <torch/script.h>
#include <torch/torch.h> // cuda相关函数头文件
using namespace std;
int main() {
auto t1 = torch::tensor({ 1,2,3,4,5,6,7,8,9 }).reshape({ 3,3 });
auto t2 = torch::tensor({ 1,0,2,6,1,1,5,3,2 }).reshape({ 3,3 });
auto t3 = t1.mul(t2);
std::cout << t3 << std::endl;
cout << "cuda::is_available() = " << torch::cuda::is_available() << endl;
system("pause");
return 0;
}
5、运行结果
可以看到,libtorch调用成功了,可以成功的使用tensor。
但是可以看到,判断cuda是否允许使用时,返回结果为0,代表不可以使用cuda,即不能使用gpu。
三、libTorch在gpu下运行
1、下载并安装cmake(>=3.0版本);下载地址
2、如果需要使用opencv,就可以和opencv一起编译;
3、使用cmake构建好libtorch工程;
(1)配置CMakeLists
待更新。。。。。。