pytorch--Logistic回归

逻辑回归(Logistic Regression)

1 概念

逻辑回归虽然名字叫做回归,但实际上却是一种分类学习方法。
线性回归完成的是回归拟合任务,而对于分类任务,我们同样需要一条线,但不是去拟合每个数据点,而是把不同类别的样本区分开来。

2 Classification(分类)

分类是监督学习的一个核心问题,在监督学习中,当输出变量Y取有限个离散值时,预测问题便成为分类问题。这时,输入变量X可以是离散的,也可以是连续的。监督学习从数据中学习一个分类模型或分类决策函数,称为分类器(classifier)。分类器对新的输入进行输出的预测(prediction),称为分类(classification).

分类问题举例:
邮件:垃圾邮件/非垃圾邮件?
在线交易:是否欺诈(是/否)?
肿瘤:恶性/良性?
以上问题可以称之为二分类问题,可以用如下形式定义:

在这里插入图片描述

其中0称之为负例,1称之为正例。

对于多分类问题,可以如下定义因变量y:
在这里插入图片描述
如果分类器用的是回归模型,并且已经训练好了一个模型,可以设置一个阈值:
在这里插入图片描述
但是对于二分类问题来说,线性回归模型的Hypothesis输出值可以大于1也可以小于0。

这个时候我们引出逻辑回归,逻辑回归的Hypothesis输出介于0与1之间,既:
在这里插入图片描述

注: 以下引自李航博士《统计学习方法》1.8节关于分类问题的一点描述:

分类是监督学习的一个核心问题,在监督学习中,当输出变量Y取有限个离散值时,预测问题便成为分类问题。这时,输入变量X可以是离散的,也可以是连续的。监督学习从数据中学习一个分类模型或分类决策函数,称为分类器(classifier)。分类器对新的输入进行输出的预测(prediction),称为分类(classification).

3 Hypothesis Representation

上一节谈到,我们需要将Hypothesis的输出界定在0和1之间,既:
在这里插入图片描述
但是线性回归无法做到,这里我们引入一个函数g, 令逻辑回归的Hypothesis表示为:
在这里插入图片描述
这里g称为Sigmoid function或者Logistic function, 具体表达式为:
在这里插入图片描述

Sigmoid 函数在有个很漂亮的“S"形,如下图所示(引自维基百科):
在这里插入图片描述
综合上述两式,我们得到逻辑回归模型的数学表达式:
在这里插入图片描述
其中 x 是我们的输入, θ为我们要求取的参数。

3 决策边界(Decision Boundary)

决策边界,也称为决策面,是用于在N维空间,将不同类别样本分开的平面或曲面。
这里我们引用Andrew Ng 课程上的两张图来解释这个问题:
线性决策边界
在这里插入图片描述
对于线性边界的情况,边界形式如下:
在这里插入图片描述
构造预测函数为:
在这里插入图片描述
函数h(x)的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:
在这里插入图片描述
非线性决策边界:
在这里插入图片描述

4 代价函数

Cost函数和J函数如下,它们是基于最大似然估计推导得到的。
在这里插入图片描述
详细说明推导的过程:逻辑回归-理论篇

5 Simplified cost function and gradient descent(简化版代价函数及梯度下降算法)

在这里插入图片描述
详细说明:斯坦福大学机器学习第六课

6 pytorch 实现

pytorch实现以及斯坦福逻辑回归课件:gitub

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: PyTorch实现Logistic回归的步骤如下: 1. 导入必要的库和数据集。 2. 定义模型:Logistic回归模型通常由一个线性层和一个sigmoid函数组成。 3. 定义损失函数:Logistic回归使用二元交叉熵作为损失函数。 4. 定义优化器:使用随机梯度下降(SGD)作为优化器。 5. 训练模型:使用训练数据集训练模型,并在每个epoch后计算损失函数和准确率。 6. 测试模型:使用测试数据集测试模型,并计算准确率。 7. 可视化结果:使用matplotlib库可视化训练和测试的损失函数和准确率。 下面是一个简单的PyTorch实现Logistic回归的示例代码: ``` import torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt # 导入数据集 from sklearn.datasets import load_breast_cancer data = load_breast_cancer() X = data.data y = data.target # 将数据转换为张量 X = torch.tensor(X, dtype=torch.float32) y = torch.tensor(y, dtype=torch.float32) # 定义模型 class LogisticRegression(nn.Module): def __init__(self): super(LogisticRegression, self).__init__() self.linear = nn.Linear(X.shape[1], 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.linear(x) x = self.sigmoid(x) return x model = LogisticRegression() # 定义损失函数和优化器 criterion = nn.BCELoss() optimizer = optim.SGD(model.parameters(), lr=.01) # 训练模型 losses = [] accuracies = [] for epoch in range(100): # 前向传播 y_pred = model(X) # 计算损失函数和准确率 loss = criterion(y_pred, y.view(-1, 1)) accuracy = ((y_pred > .5).float() == y.view(-1, 1)).float().mean() # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 记录损失函数和准确率 losses.append(loss.item()) accuracies.append(accuracy.item()) # 打印训练过程 print('Epoch [{}/{}], Loss: {:.4f}, Accuracy: {:.4f}'.format(epoch+1, 100, loss.item(), accuracy.item())) # 测试模型 with torch.no_grad(): y_pred = model(X) accuracy = ((y_pred > .5).float() == y.view(-1, 1)).float().mean() print('Test Accuracy: {:.4f}'.format(accuracy.item())) # 可视化结果 plt.plot(losses) plt.title('Training Loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.show() plt.plot(accuracies) plt.title('Training Accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.show() ``` 在这个示例中,我们使用了乳腺癌数据集作为示例数据集。我们首先将数据集转换为张量,然后定义了一个Logistic回归模型。我们使用二元交叉熵作为损失函数,使用随机梯度下降(SGD)作为优化器。我们训练模型并记录损失函数和准确率,然后使用测试数据集测试模型并计算准确率。最后,我们使用matplotlib库可视化训练和测试的损失函数和准确率。 ### 回答2: Logistic回归是一种二元分类算法,其主要目的是根据给定的输入数据,预测其所属的类别。在本文中,我们将介绍如何使用PyTorch来实现Logistic回归。 首先,我们需要导入必要的PyTorch库: import torch import torch.nn as nn import torch.optim as optim 然后,我们需要定义我们的数据集。这里我们假设我们有n个数据样本,每个样本包含m个特征和一个二元类别。我们可以将这些数据存储在两个PyTorch张量中:一个包含特征,一个包含类别标签。 x = torch.randn(n, m) # 特征张量 y = torch.randint(high=2, size=(n, 1)).float() # 类别标签张量 接下来,我们需要定义我们的Logistic回归模型。这里我们将使用一个包含单个线性层的简单神经网络,以及一个sigmoid激活函数。 class LogisticRegression(nn.Module): def __init__(self, input_size): super(LogisticRegression, self).__init__() self.linear = nn.Linear(input_size, 1) def forward(self, x): output = self.linear(x) output = torch.sigmoid(output) return output model = LogisticRegression(m) 接下来,我们需要定义我们的损失函数和优化器。对于Logistic回归,通常使用二元交叉熵作为损失函数,使用随机梯度下降作为优化器。 criterion = nn.BCELoss() optimizer = optim.SGD(model.parameters(), lr=0.1) 现在我们可以开始训练我们的模型了。首先,我们将定义训练的迭代次数。然后,我们将循环n_epochs次并在每次迭代中计算模型的损失和梯度,并使用优化器更新模型参数。 n_epochs = 1000 for epoch in range(n_epochs): # 前向传播 y_pred = model(x) # 计算损失 loss = criterion(y_pred, y) # 反向传播 optimizer.zero_grad() loss.backward() optimizer.step() # 输出当前损失 if epoch % 100 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, n_epochs, loss.item())) 最后,我们可以使用训练好的模型预测新的数据。我们只需要将数据传递给模型,然后将输出映射到二元类别。 with torch.no_grad(): y_pred = model(new_data) prediction = (y_pred >= 0.5).float() print('Prediction:', prediction) 总的来说,使用PyTorch实现Logistic回归非常简单。我们只需要定义模型,损失函数和优化器,然后使用反向传播更新模型参数。当然,在实现Logistic回归模型时还有许多其他的考虑因素,例如数据预处理和超参数调整,但这些在这篇文章里并没有讨论。 ### 回答3: pytorch一个开源的机器学习框架,它可以帮助我们快速实现各种机器学习算法。其中,logistic回归一个经典的二分类算法,我们可以使用pytorch来实现它。 首先,我们需要准备好数据集。通常情况下,我们会将数据集划分为训练集和测试集,用训练集来训练模型,用测试集来测试模型的性能。 然后,我们需要定义模型。对于logistic回归来说,模型通常只有一层线性层和一个sigmoid激活函数。这可以通过pytorch中的nn.Linear和nn.Sigmoid来实现。 接下来,我们需要定义损失函数和优化器。对于logistic回归来说,常用的损失函数是二元交叉熵损失函数。优化器可以选择随机梯度下降法。 然后,我们可以通过迭代训练集中的样本来训练模型。具体来说,对于每一个样本,我们需要调用模型来预测其所属类别,计算预测值和真实值之间的误差,并根据误差更新模型的参数。这可以通过pytorch中的backward和step方法来实现。 最后,我们可以使用测试集来测试模型的性能。具体来说,对于每一个样本,我们需要调用模型来预测其所属类别,并将预测结果和真实值进行比较,计算分类准确率。 以上就是用pytorch实现logistic回归的基本步骤。当然,实际应用中还有很多需要注意和优化的地方,比如数据预处理、超参数调整等等。但是掌握了基本的实现方法,我们就可以应用pytorch来实现各种机器学习算法了。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刘丶小歪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值