【PyTorch】建造神经网络

本文是PyTorch学习教程,详细介绍了如何构建神经网络,包括回归和分类问题,使用min-batch加速训练,以及探讨了不同Optimizer的优化效果。文章通过实例展示了神经网络的训练过程和保存提取方法。
摘要由CSDN通过智能技术生成

本文为 PyTorch 学习总结,讲解建造神经网络。欢迎交流

前言

神经网络分为两种类型,一种是回归,一种是分类。回归的输出值是连续问题,分类的输出值是离散值,我们将分别搭建这两种神经网络。

关系拟合(回归)

首先引入库:

import torch
from torch.autograd import Variable
import torch.nn.functional as F # 激励函数
import matplotlib.pyplot as plt

然后需要自己造一些数据,并设置噪声:

# x data (tensor), shape=(100, 1)
# 在torch中只会处理二维数据,用unsqueeze将一维转换为二维
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
# noisy y data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size())

因为神经网络只能输入 Variable 型数据,将数据装入 Variable

x, y = Variable(x), Variable(y)

然后画出散点图,进行数据可视化:

plt.scatter(x.data.numpy(), y.data.numpy())
plt.show()

得到的散点图如下:

在这里插入图片描述

接着就要定义我们的神经网络了,其中包括了搭建神经网络所需的信息 __init__ 和前向传播过程 forward,详解见注释:

# 用class定义神经网络,继承torch.n.Module
class Net(torch.nn.Module):
    # 官方步骤。搭建神经网络层所需的信息
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__() # 搭图前继承Net
        # 接下来是自己的内容
        # 层信息都是属性,隐藏层线性输出
        # n_feature为输入数据个数,n_hidden为隐藏层神经元个数
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        # 预测的神经层,n_hidden为接收的隐藏层神经元个数,n_output为输出个数
        self.predict = torch.nn.Linear(n_hidden, n_output)
    # 前向传播过程
    def forward(self, x): # x为输入信息
        # 先用hidden加工x得到隐藏层输出的信息,再用激励函数加工
        x = F.relu(self.hidden(x))
        # 输出信息,预测无需用激励函数
        x = self.predict(x)
        return x

搭建完神经网络后,就可以定义 net了:

net = Net(1, 10, 1)
# 输出神经网络所有层结构
print(net)

得到神经网络所有层结构:

在这里插入图片描述

然后还需要对神经网络进行优化,并定义代价函数(损失函数):

# 优化神经网络。传入net的所有参数, 学习率lr<1
optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
# 预测值和真实值的误差计算公式 (均方差),均方差足以应对回归问题
loss_func = torch.nn.MSELoss()

定义完这些步骤后,就可以开始训练我们的神经网络了:

for t in range(100):
    prediction = net(x) # 假设函数的预测值
    loss = loss_func(prediction, y) # 误差
    
    # 开始优化
    optimizer.zero_grad()   # 将所有梯度降为0。清空上一步的梯度
    loss.backward()         # 误差反向传播, 计算参数更新值
    # 以学习率0.5优化梯度
    optimizer.step()        # 将参数更新值施加到net的parameters上

这就是整个神经网络的训练过程了,如果要可视化这个过程,还需要添加一些代码:

# 可视化
plt.ion() # 设置实时打印
plt.show()

optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
loss_func = torch.nn.MSELoss()

for t in range(100):
    ...
    
    if t % 5 == 0: # 每5步打印
        # plot and show learning process
        plt.cla()
        plt.scatter(x.data.numpy(), y.data.numpy()) # 原始数据
        # 神经网络学习到什么程度了
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
        # 打印误差
        plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={
   'size': 20, 'color':  'red'})
        plt.pause(0.1)

plt.ioff()
plt.show()

搭建出的神经网络结果为:

在这里插入图片描述

由此,我们搭建出了一个简单的神经网络,学习了如何看神经网络,它是如何学习的。

区分类型(分类)

这部分的代码与上一部分相似,只需要进行部分修改,下面进行详细讲解。

数据部分需要进行修改,重新生成一些数据,注意 x,y 部分的数据类型:

n_data = torch.ones(100, 2) # data的基数
x0 = torch.normal(2*n_data, 1) # 类型0 x data (tensor), shape=(100, 2)
y0 = torch.zeros(100) # 类型0 y data (tensor), shape=(100, )
x1 = torch.normal(-2*n_data, 1) # 类型1 x data (tensor), shape=(100, 1)
y1 = torch.ones(100) # 类型1 y data (tensor), shape=(100, )
# 下面为x, y数据的规定形式 (torch.cat合并数据)
# x合并为数据,使用32位FloatTensor的浮点数
x = torch.cat((x0, x1), 0).type(torch.FloatTensor)
# y合并为标签,使用64位LongTensor的整型
y = torch.cat((y0, y1), ).type(torch.LongTensor)

x, y = Variable(x), Variable(y) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值