变分推断(Variational Inference)

1.变分推断简称VI,是一种确定性近似推断方法

2.基于平均场理论的VI是假设q(z)可以分解为M个独立qi

3.采取坐标上升法可以求解VI问题

4.VI有两个局限:假设太强,同时积分也不一定能算

5.为了解决积分不能算问题,考虑采取随机梯度法进行求解,这就有SGVI

6.变分L(Φ)关于q(z)的梯度通过期望相联系,这个期望通过蒙特卡洛采样来近似

7.由于期望有个log符号,采样需要很多样本,且方差很大

8.通过重参数化技巧解决方差大的问题,主要思想是把z的随机成分去掉,转移到一个确定性分布p(ε)

变分推断,英文Variational Inference,简称VI,是一种近似推断的方法,属于确定性近似。它跟EM算法都是求解隐变量后验分布的算法,在EM算法中,隐变量z和未知参数θ是分开的,在变分推断里面,它们合并在一起,依然用z代替。

因此,其推导过程与EM算法差不多,建议读者先熟悉小编在文章EM算法的推导过程。

公式推导

展开对数似然函数:


两边同时乘以q(z),

做积分与恒等转换:

红色部分就是我们在EM算法提到的ELBO,这里我们称为变分,记做L(q);蓝色部分为KL散度,恒大于等于0.

在EM算法中我们介绍过,E步本质是求隐变量后验分布p(z|x),如果没办法得到该后验,一种思想是使得q(z)去逼近p(z|x)

这样就能让KL散度为0,那么求解变分的最大值,就是似然对数的最大值。因此,优化问题变为:

下面我们就求解q(z).

第一步我们利用了统计物理学的平均场理论的思想,假设q(z)可以分解为M个独立的qi:

求解的想法是先固定其他M-1个分量,只求解其中一个qj,重复M次,就得到所有的q(z).

展开L(q):

代入qi,对于红色部分:

对于蓝色部分:

注:倒数第二个等号化简过程如下

合并起来,得到:

这样,变分推断问题转化为一个最优问题:

最大L(q)的解是满足:


这个解是基于平均场理论假设的结果.

公式求解

我们基于上一节的结果求解其参数,展开最优解公式:

利用坐标上升迭代法可以求解各个参数:

每轮更新上面1-m个参数,直至L(q)收敛。

这个基于平均场假设的模型有很大的局限性,主要体现在:

  • 假设太强,Z非常复杂的情况下,假设不适用

  • 期望中的积分,可能无法计算

SGVI

从Z到 X的过程叫做生成过程或译码,反过来叫推断过程或编码过程,基于平均场的变分推断可以导出坐标上升的算法,但是这个假设在一些情况下假设太强,同时积分也不一定能算。

优化方法除了坐标上升,还有梯度上升的方式,我们希望通过梯度上升来得到变分推断的另一种算法。这里采取随机梯度法,结合变分推断,导出来的算法叫随机梯度变分推断英文是Stochastic Gradient Variational Inference,简写SGVI.

为了方便推导,我们假定q(z)是有关Φ参数的概率分布:

那么,变分L(q)改写成:

最优化问题是:

我们直接对它求梯度:

蓝色部分等于0是因为:

继续化简L(Φ)梯度:

这样,变分关于q(z)的梯度通过期望相联系。这个期望可以通过蒙特卡洛采样来近似,从⽽得到梯度,然后利⽤梯度上升的⽅法来得到参数

但是由于求和符号中存在⼀个对数项,于是直接采样的方差很大(high variance),需要采样的样本⾮常多。

为了解决⽅差太⼤的问题,我们采⽤重参数化技巧( Reparameterization Trick) .

考虑z~Φ之间的随机关系,我们把z的随机成分去掉,转移到一个确定性分布p(ε):

于是有:


代入变分L(Φ)公式:

最后,通过蒙特卡洛采样近似:

得到梯度更新值:

  • 13
    点赞
  • 76
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
### 回答1: 变分推断variational inference)是一种用于在概率模型中近似推断潜在变量的方法。在概率模型中,我们通常有观测数据和潜在变量两个部分。我们希望通过观测数据集来估计潜在变量的后验分布。然而,由于计算复杂度的限制,我们无法直接计算后验分布。 变分推断通过近似后验分布为一个简化的分布来解决这个问题。它会选择一个与真实后验分布相似的分布族,然后通过最小化这个分布与真实后验分布之间的差异来得到一个最佳的近似分布。这个问题可以转化为一个最优化问题,通常使用变分推断的一个常用方法是最大化证据下界(evidence lower bound,ELBO)来近似后验分布。 变分推断的一个重要特点是可以处理大规模和复杂的概率模型。由于近似分布是通过简化的分布族来表示的,而不是直接计算后验分布,所以它可以减少计算复杂度。此外,变分推断还可以通过引入额外的约束或假设来进一步简化近似分布,提高计算效率。 然而,变分推断也有一些缺点。因为近似分布是通过简化的分布族来表示的,所以它会引入一定的偏差。此外,变分推断的结果依赖于所选择的分布族,如果分布族选择不合适,可能会导致较差的近似结果。 总之,变分推断是一种用于近似计算概率模型中后验分布的方法,通过选择一个与真实后验分布相似的分布族,并最小化与真实后验分布之间的差异来得到一个最佳的近似分布。它具有处理大规模和复杂模型的能力,但也有一些局限性。 ### 回答2: 转变分推断variational inference)是一种用于近似求解复杂概率模型的方法。它的核心思想是将复杂的后验分布近似为一个简单的分布,通过最小化这两个分布之间的差异来求解模型的参数。 变分推断通过引入一个简单分布(称为变分分布)来近似复杂的后验分布。这个简单分布通常属于某个已知分布族,例如高斯分布或指数分布。变分推断通过最小化变分分布和真实后验分布之间的差异,来找到最优的参数。 为了实现这一点,变分推断使用了KL散度(Kullback-Leibler divergence)这一概念。KL散度是用来衡量两个概率分布之间的差异的指标。通过最小化变分分布与真实后验分布之间的KL散度,我们可以找到一个最优的变分分布来近似真实后验分布。 变分推断的步骤通常包括以下几个步骤: 1. 定义变分分布:选择一个简单的分布族作为变分分布,例如高斯分布。 2. 定义目标函数:根据KL散度的定义,定义一个目标函数,通常包括模型的似然函数和变分分布的熵。 3. 最优化:使用数值方法(例如梯度下降法)最小化目标函数,找到最优的变分参数。 4. 近似求解:通过最优的变分参数,得到近似的后验分布,并用于模型的推断或预测。 变分推断的优点是可以通过选择合适的变分分布,来控制近似精度和计算复杂度之间的平衡。它可以应用于各种概率模型和机器学习任务,例如潜在变量模型、深度学习和无监督学习等。 总而言之,转变分推断是一种用于近似求解复杂概率模型的方法,通过近似后验分布来求解模型的参数。它通过最小化变分分布与真实后验分布之间的差异来实现近似求解。这个方法可以应用于各种概率模型和机器学习任务,具有广泛的应用价值。 ### 回答3: 变分推断Variational Inference)是一种用于概率模型中的近似推断方法。它的目标是通过近似的方式来近似估计概率分布中的某些未知参数或隐变量。 在概率模型中,我们通常希望得到后验概率分布,即给定观测数据的情况下,未知参数或隐变量的概率分布。然而,由于计算复杂性的原因,我们往往无法直接计算后验分布。 变分推断通过引入一个称为变分分布的简化分布,将原问题转化为一个优化问题。具体来说,我们假设变分分布属于某个分布族,并通过优化一个目标函数,使得变分分布尽可能接近真实的后验分布。 目标函数通常使用卡尔贝克-勒勒散度(Kullback-Leibler divergence)来度量变分分布与真实后验分布之间的差异。通过最小化这个目标函数,我们可以找到最优的近似分布。在这个优化问题中,我们通常将问题转化为一个变分推断问题,其中我们需要优化关于变分分布的参数。 变分推断的一个优点是可以应用于各种类型的概率模型,无论是具有连续随机变量还是离散变量。此外,变分推断还可以解决复杂的后验推断问题,如变分贝叶斯方法和逐步变分推断等。 然而,变分推断也存在一些限制。例如,它通常要求选择一个合适的变分分布族,并且该族必须在计算上可以处理。此外,变分推断还可能导致近似误差,因为我们将问题简化为一个优化问题,可能会导致对真实后验分布的一些信息丢失。 总而言之,变分推断是一种强大的近似推断方法,可以用于概率模型中的参数和隐变量的估计。它通过引入变分分布来近似计算复杂的后验概率分布,从而转化为一个优化问题。然而,需要注意选择合适的变分分布族和可能的近似误差。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

整得咔咔响

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值