变分推断(variational inference,VI)以及一篇论文阅读

一、变分推断(variational inference,VI)

原始文献参考:V ariational Inference: A Review for Statisticians

专栏参考1、MCMC算法详解 - 知乎 (zhihu.com)

专栏参考2、基于近似计算解决推断问题——变分推断(一) - 知乎 (zhihu.com)

利用近似计算来解决难计算的概率密度估计,是现代统计学中的一个惯用手段。这一方法在贝叶斯推断统计中尤为重要,以为贝叶斯统计将所有关于未知量的推断都构建为涉及后验概率的计算。而一个经典的近似推断方法,就是变分推断(variational inference,VI)

为了对概率密度近似计算,常用的方法就是mcmc(蒙特卡洛算法,马尔可夫链)以及后来的变分推断。

对于mcmc算法:核心思想是某一时刻状态转移的概率只依赖于它的前一个状态。  

  我们用数学定义来描述,则假设我们的序列状态是...Xt−2, Xt−1, Xt, Xt+1,...,那么我们的在时刻Xt+1的状态的条件概率仅仅依赖于时刻Xt。

马尔科夫链的平稳分布收敛主要依赖于状态转移矩阵,所以关键是如何构建状态转移矩阵,使得最终的平稳分布是我们所要的分布。

而为了加快马尔科夫链的收敛,传统方式引入了MH算法以及gibbs采样。具体算法可以参考:

机器学习之MCMC算法 - 微笑sun - 博客园 (cnblogs.com)

VI 与 MCMC 基于不同的思想解决推断问题。 MCMC 基于马尔科夫链采样来近似后验,而 VI 则是基于 KL 散度将问题转化为优化问题来近似后验。这两种方法各有优劣:

  • MCMC 相比于 VI 需要更多的计算,但随着采样次数增加, MCMC 能为精度提供保证。
  • VI 无法提供精度的保证,但速度快于 MCMC ,且 VI 解决的是优化问题,所以能够发挥随即优化算法和分布式优化的优势

所以, VI 更使用于大规模数据、需要快速训练模型的场景, MCMC 使用于小规模数据、但我们需要用计算代价换取精度的情况。

除了数据集规模,另一个值得思考的因素是后验分布的几何特性。如,当后验为多种模式的混合模型,每个对应的标签排列的组件。对于 Gibbs sampling 来说,它能专注于目标的一个模型,但在应对混合模型时,就显得力不从心了,而 VI 在混合模型的表现明显比 MCMC 好得多。

那么什么是变分推断

变分推断使用了我们之前多次提到的KL散度,利用KL散度去寻找隐变量的近似分布。在之前的文章中,KL散度多被利用来判断训练模型与测试模型之间的差异程度,不同于mcmc利用转移矩阵不断的寻找下一个状态直至收敛最后在一定范围内求平均值的做法,利用KL散度所须得算力较少,因此更适合在较大的数据集上使用。

关于KL在证据下界(ELBO)的推导过程可以查看专栏2,但专栏2其实是对参考论文进行中文翻译。

二、LARGE SCALE GAN TRAINING FOR HIGH FIDELITY NATURAL IMAGE SYNTHESIS(bigGan 用于高保真自然图像合成的大规模 GAN 训练.2018)

本论文主要目的是解决三个问题:

1、证明了 GAN 从缩放中受益匪浅,并且与现有技术相比,训练模型的参数数量是现有技术的 2 到 4 倍,batch 大小是 8 倍。引入了两个简单的通用架构更改,以提高可扩展性,并修改正则化方案以改善条件,明显提高性能。

2、“截断技巧”的应用

3、发现了big GAN 特有的不稳定性,并根据经验对其进行了表征。利用该分析的见解,证明了新的和现有技术的结合可以减少这些不稳定性,但是只有以极大的性能成本才能实现完全的训练稳定性。

(1)大规模(big):仅单纯的扩大规模就能很好的提升Gan的性能(bigGan主要特点):

仅需将batch size扩大8倍就可以将效果增幅46%。而如果将每层通道增加50%,实验效果增幅了21%

(2)“截断技巧”:利用截断权衡多样性和保真度

从直观上来看:

(a)部分为阈值取2,1,0.5,0.04后“截断”后的效果图,(b)为将截断应用于条件不佳的模型时产生的饱和伪影。

截断技巧:采用一个用 z ∼ N (0, I) 训练的模型并从截断的法线中采样 z(其中超出范围的值被重新采样以落在该范围内。其中z表示先验分布或者噪声向量,具体表示什么在于它所处的训练阶段),截断技巧通过控制采样的范围达到生成质量上的提高。

 同时从(a)中也可以得出这样的结论:对幅度高于所选阈值的值进行重新采样来截断 z 向量,可以使单个样本质量的提高,但减少了整体样本多样性。

为了抵消类似于(b)情况,文章通过将 G 调节为平滑来强制执行截断的适应性,以便 z 的整个空间将映射到良好的输出样本。为此,文章采用正交正则化,它直接强制执行正交性条件:

其中 W 是权重矩阵,β 是超参数。这种正则化通常过于局限,文章为了放松约束,同时实现模型所需的平滑度,发现最好的版本是从正则化中删除对角项,并且旨在最小化滤波器之间的成对余弦相似性,但不限制它们的范数:

其中 1 表示一个矩阵,它所有元素都设置为 1。

(3)追求稳定的后续:

主要包括两个一个是最G的限制,一个是对D的限制。

对G:

为了解决 G 上的训练崩溃,通过适当调整奇异值 σ0 以抵消光谱爆炸的影响。

对D:

文章假设这些噪声是由于对抗训练优化导致的,如果这种频谱噪声与不稳定性有因果关系,那么相对采用的反制是使用梯度惩罚,通过采用 R1 零中心梯度惩罚.


在追求稳定性的过程中,文章作者发现。稳定性不知来源于生成器G、鉴别器D,同时也来源于生成对抗的过程中。在前人的工作中为了追求较好的稳定性,防止模型在训练的过程中崩溃,大多采用牺牲性能或者消耗巨大算力的方法。

文章作者最后采用,放松这种限制性能条件并允许在训练的后期阶段发生崩溃来获得更好的最终性能。

 其实bigGan就是在普通的Gan上使用更大的batch,更大的参数,相应的为了调节训练奔溃与性能需求之间的平衡引入了不同的惩罚损失,同时本文提出了”截断技巧“(2018)的概念在后续研究的过程中产生了极其重要的影响。是后续一些Gan网络改进的鼻祖。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 推断variational inference)是一种用于在概率模型中近似推断潜在量的方法。在概率模型中,我们通常有观测数据和潜在量两个部分。我们希望通过观测数据集来估计潜在量的后验分布。然而,由于计算复杂度的限制,我们无法直接计算后验分布。 推断通过近似后验分布为一个简化的分布来解决这个问题。它会选择一个与真实后验分布相似的分布族,然后通过最小化这个分布与真实后验分布之间的差异来得到一个最佳的近似分布。这个问题可以转化为一个最优化问题,通常使用推断的一个常用方法是最大化证据下界(evidence lower bound,ELBO)来近似后验分布。 推断的一个重要特点是可以处理大规模和复杂的概率模型。由于近似分布是通过简化的分布族来表示的,而不是直接计算后验分布,所以它可以减少计算复杂度。此外,推断还可以通过引入额外的约束或假设来进一步简化近似分布,提高计算效率。 然而,推断也有一些缺点。因为近似分布是通过简化的分布族来表示的,所以它会引入一定的偏差。此外,推断的结果依赖于所选择的分布族,如果分布族选择不合适,可能会导致较差的近似结果。 总之,推断是一种用于近似计算概率模型中后验分布的方法,通过选择一个与真实后验分布相似的分布族,并最小化与真实后验分布之间的差异来得到一个最佳的近似分布。它具有处理大规模和复杂模型的能力,但也有一些局限性。 ### 回答2: 转推断variational inference)是一种用于近似求解复杂概率模型的方法。它的核心思想是将复杂的后验分布近似为一个简单的分布,通过最小化这两个分布之间的差异来求解模型的参数。 推断通过引入一个简单分布(称为分分布)来近似复杂的后验分布。这个简单分布通常属于某个已知分布族,例如高斯分布或指数分布。推断通过最小化分分布和真实后验分布之间的差异,来找到最优的参数。 为了实现这一点,推断使用了KL散度(Kullback-Leibler divergence)这一概念。KL散度是用来衡量两个概率分布之间的差异的指标。通过最小化分分布与真实后验分布之间的KL散度,我们可以找到一个最优的分分布来近似真实后验分布。 推断的步骤通常包括以下几个步骤: 1. 定义分分布:选择一个简单的分布族作为分分布,例如高斯分布。 2. 定义目标函数:根据KL散度的定义,定义一个目标函数,通常包括模型的似然函数和分分布的熵。 3. 最优化:使用数值方法(例如梯度下降法)最小化目标函数,找到最优的分参数。 4. 近似求解:通过最优的分参数,得到近似的后验分布,并用于模型的推断或预测。 推断的优点是可以通过选择合适的分分布,来控制近似精度和计算复杂度之间的平衡。它可以应用于各种概率模型和机器学习任务,例如潜在量模型、深度学习和无监督学习等。 总而言之,转推断是一种用于近似求解复杂概率模型的方法,通过近似后验分布来求解模型的参数。它通过最小化分分布与真实后验分布之间的差异来实现近似求解。这个方法可以应用于各种概率模型和机器学习任务,具有广泛的应用价值。 ### 回答3: 推断Variational Inference)是一种用于概率模型中的近似推断方法。它的目标是通过近似的方式来近似估计概率分布中的某些未知参数或隐量。 在概率模型中,我们通常希望得到后验概率分布,即给定观测数据的情况下,未知参数或隐量的概率分布。然而,由于计算复杂性的原因,我们往往无法直接计算后验分布。 推断通过引入一个称为分分布的简化分布,将原问题转化为一个优化问题。具体来说,我们假设分分布属于某个分布族,并通过优化一个目标函数,使得分分布尽可能接近真实的后验分布。 目标函数通常使用卡尔贝克-勒勒散度(Kullback-Leibler divergence)来度量分分布与真实后验分布之间的差异。通过最小化这个目标函数,我们可以找到最优的近似分布。在这个优化问题中,我们通常将问题转化为一个推断问题,其中我们需要优化关于分分布的参数。 推断的一个优点是可以应用于各种类型的概率模型,无论是具有连续随机量还是离散量。此外,推断还可以解决复杂的后验推断问题,如分贝叶斯方法和逐步推断等。 然而,推断也存在一些限制。例如,它通常要求选择一个合适的分分布族,并且该族必须在计算上可以处理。此外,推断还可能导致近似误差,因为我们将问题简化为一个优化问题,可能会导致对真实后验分布的一些信息丢失。 总而言之,推断是一种强大的近似推断方法,可以用于概率模型中的参数和隐量的估计。它通过引入分分布来近似计算复杂的后验概率分布,从而转化为一个优化问题。然而,需要注意选择合适的分分布族和可能的近似误差。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值