Flax 是一个构建在 JAX(Just Another eXperimental library)之上的深度学习库,它旨在提供高级的、模块化的接口,以便更轻松地定义、训练和部署神经网络模型。 Flax 和 Haiku 是两个相互关联的深度学习库,它们都是基于 JAX 构建的,旨在提供高级的模块化接口。 Utilities可以在Haiku和Flax之间无缝移动。
from flax import linen as flax_nn
import jax
import jax.numpy as jnp
class SimpleModel(flax_nn.Module):
hidden_size: int
output_size: int
def setup(self):
# 在 setup 方法中定义模块的初始化逻辑
self.hidden = nn.Dense(features=self.hidden_size)
self.output = nn.Dense(features=self.output_size)
def __call__(self, x):
# 前向传播逻辑,包括全连接和激活函数
x = self.hidden(x)
x= jax.nn.relu(x)
x = self.output(x)
return jax.nn.sigmoid(x)
# 创建模型实例,继承自flax_nn.Module,不需要创建函数
# 如果

最低0.47元/天 解锁文章
1667

被折叠的 条评论
为什么被折叠?



