Java 8 引入的 Stream
API 提供了方便的并行处理方法。在这段代码中,可以将 fragInfoList
转换为并行流(parallelStream
),并使用并行流来处理每个 FragmentInfo
对象。
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;
public class ParallelProcessingExample {
public static void main(String[] args) {
// 假设你已经有了 fragInfoList 的初始化代码
List<FragmentInfo> fragInfoList = getFragInfoList(); // 获取fragInfoList的方法
// 使用并行流处理并生成 mutSeqsList
List<String> mutSeqsList = fragInfoList.parallelStream()
.filter(FragmentInfo::getMut) // 过滤出需要的fragInfo
.peek(System.out::println) // 打印fragInfo
.map(ParallelProcessingExample::retrieveSeq) // 转换为mutSeq
.collect(Collectors.toList()); // 收集结果到列表中
// 打印或使用mutSeqsList
mutSeqsList.forEach(System.out::println);
}
// 假设你的retrieveSeq方法
private static String retrieveSeq(FragmentInfo fragInfo) {
// 方法实现
return "mockSequence"; // 替换为实际实现
}
// 假设你的getFragInfoList方法
private static List<FragmentInfo> getFragInfoList() {
// 模拟生成fragInfoList
return new ArrayList<>(); // 替换为实际实现
}
// FragmentInfo类的定义
static class FragmentInfo {
private boolean mut;
public boolean getMut() {
return mut;
}
@Override
public String toString() {
return "FragmentInfo{mut=" + mut + "}";
}
}
}
parallelStream()
:将fragInfoList
转换为并行流。filter(FragmentInfo::getMut)
:过滤出getMut()
方法返回true
的FragmentInfo
对象。peek(System.out::println)
:打印每个FragmentInfo
对象,类似于你的System.out.println(fragInfo)
语句。map(ParallelProcessingExample::retrieveSeq)
:将每个FragmentInfo
对象转换为对应的mutSeq
字符串。collect(Collectors.toList())
:将结果收集到一个List
中。
使用并行流可以充分利用多核处理器的优势,将任务分解为多个子任务并行执行,从而提高处理速度。需要注意的是,并行流的性能提升依赖于任务的可并行性和系统的硬件配置。对于 I/O 密集型任务或线程不安全的操作,需要谨慎使用并行流。