3.pandas总结

Pandas

Pandas介绍

  • 2008年WesMcKinney开发出的库
  • 专门用于数据挖掘的开源python库
  • 以Numpy为基础,借助Numpy模块在计算方面性能高的优势
  • 基于matplotlib,能够简便的画图
  • 独特的数据结构
为什么使用Pandas

​ Numpy已经能够帮助我们处理数据,能够结合matplotlib解决部分数据展示等问题,那么pandas学习的目的 在什么地方呢?

  • 便捷的数据处理能力
  • 读取文件方便
  • 封装了Matplotlib、Numpy的画图和计算
案例:
# 导入pandas

import pandas as pd

# 创建一个符合正太分布的10个股票5天的涨跌幅数据
stock_change = np.random.normal(0, 1, (10, 5))
'''array([[ 0.11432785,  1.00433057,  1.12925809,  0.7517578 ,  0.33413123],
       [-0.47515651,  0.49629358,  0.7132379 , -1.1929853 ,  1.57699902],
       [-1.67540396,  1.34730591, -0.50975067,  1.09261705, -0.05291157],
       [-0.95959668, -0.83221357, -0.75756244, -1.13773994, -0.43446868],
       [-1.00440253,  0.59896713, -0.42717083,  0.25950335,  2.5717486 ],
       [ 0.97740356, -2.42831517, -0.96281608, -0.83297409, -0.9160361 ],
       [-0.16537817,  0.13605012, -0.61955882,  0.19989032, -2.63318574],
       [ 0.63238451,  0.47407471, -0.83024488, -0.12913623,  0.6382843 ],
       [-0.97878723, -0.50425512,  1.4271656 ,  1.96141366, -1.92209959],
       [ 1.07952173,  0.22794844,  0.16406044, -0.05989723, -0.84478531]])'''

# 但是这样的数据形式很难看到存储的是什么的样的数据,并也很难获取相应的数据,比如需要获取某个指定股票的数据,就很难去获取!!

# 问题:如何让数据更有意义的显示?处理刚才的股票数据
# 使用Pandas中的数据结构
stock_day_rise = pd.DataFrame(stock_change)
stock_day_rise
# 给股票涨跌幅数据增加行列索引,显示效果更佳

# 增加行索引
# 构造行索引序列
stock_code = ['股票' + str(i) for i in range(stock_day_rise.shape[0])]

# 添加行索引
data = pd.DataFrame(stock_change, index=stock_code)

# 增加列索引
# 股票的日期是一个时间的序列,我们要实现从前往后的时间还要考虑每月的总天数等,不方便。使用pd.date_range():用于生成一组连续的时间序列(暂时了解)
'''date_range(start=None,end=None, periods=None, freq='B')

    start:开始时间

    end:结束时间

    periods:时间天数

    freq:递进单位,默认1天,'B'默认略过周末'''
# 生成一个时间的序列,略过周末非交易日
date = pd.date_range('2017-01-01', periods=stock_day_rise.shape[1], freq='B')

# index代表行索引,columns代表列索引
data = pd.DataFrame(stock_change, index=stock_code, columns=date)
data

在这里插入图片描述

DataFrame
DataFrame结构

DataFrame对象既有行索引,又有列索引

  • 行索引,表明不同行,横向索引,叫index,0轴,axis=0
  • 列索引,表名不同列,纵向索引,叫columns,1轴,axis=1

在这里插入图片描述

DatatFrame的属性
  • shape
data.shape
# 结果
(10, 5)
  • index

DataFrame的行索引列表

data.index

Index(['股票0', '股票1', '股票2', '股票3', '股票4', '股票5', '股票6', '股票7', '股票8', '股票9'], dtype='object')
  • columns

DataFrame的列索引列表

data.columns

DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04', '2017-01-05',
               '2017-01-06'],
              dtype='datetime64[ns]', freq='B')
  • values

直接获取其中array的值

data.values

array([[-0.06544031, -1.30931491, -1.45451514,  0.57973008,  1.48602405],
       [-1.73216741, -0.83413717,  0.45861517, -0.80391793, -0.46878575],
       [ 0.21805567,  0.19901371,  0.7134683 ,  0.5484263 ,  0.38623412],
       [-0.42207879, -0.33702398,  0.42328531, -1.23079202,  1.32843773],
       [-1.72530711,  0.07591832, -1.91708358, -0.16535818,  1.07645091],
       [-0.81576845, -0.28675278,  1.20441981,  0.73365951, -0.06214496],
       [-0.98820861, -1.01815231, -0.95417342, -0.81538991,  0.50268175],
       [-0.10034128,  0.61196204, -0.06850331,  0.74738433,  0.143011  ],
       [ 1.00026175,  0.34241958, -2.2529711 ,  0.93921064,  1.14080312],
       [ 2.52064693,  1.55384756,  1.72252984,  0.61270132,  0.60888092]])
  • T

转置

data.T
  • head(5):显示前5行内容

如果不补充参数,默认5行。填入参数N则显示前N行

data.head(5)

2017-01-02 00:00:00    2017-01-03 00:00:00    2017-01-04 00:00:00    2017-01-05 00:00:00    2017-01-06 00:00:00
股票0    -0.065440    -1.309315    -1.454515    0.579730    1.486024
股票1    -1.732167    -0.834137    0.458615    -0.803918    -0.468786
股票2    0.218056    0.199014    0.713468    0.548426    0.386234
股票3    -0.422079    -0.337024    0.423285    -1.230792    1.328438
股票4    -1.725307    0.075918    -1.917084    -0.165358    1.076451
  • tail(5):显示后5行内容

如果不补充参数,默认5行。填入参数N则显示后N行

data.tail(5)

 2017-01-02 00:00:00    2017-01-03 00:00:00    2017-01-04 00:00:00    2017-01-05 00:00:00    2017-01-06 00:00:00
股票5    -0.815768    -0.286753    1.204420    0.733660    -0.062145
股票6    -0.988209    -1.018152    -0.954173    -0.815390    0.502682
股票7    -0.100341    0.611962    -0.068503    0.747384    0.143011
股票8    1.000262    0.342420    -2.252971    0.939211    1.140803
股票9    2.520647    1.553848    1.722530    0.612701    0.608881
DatatFrame索引的设置
修改行列索引值
stock_code = ["股票_" + str(i) for i in range(stock_day_rise.shape[0])]

# 必须整体全部修改
data.index = stock_code

#注意:以下修改方式是错误的
# 错误修改方式
data.index[3] = '股票_3'
重设索引

reset_index(drop=False)

  • 设置新的下标索引
  • drop:默认为False,不删除原来索引,如果为True,删除原来的索引值
# 重置索引,drop=False
data.reset_index()

    index    2017-01-02 00:00:00    2017-01-03 00:00:00    2017-01-04 00:00:00    2017-01-05 00:00:00    2017-01-06 00:00:00
0    股票_0    -0.065440    -1.309315    -1.454515    0.579730    1.486024
1    股票_1    -1.732167    -0.834137    0.458615    -0.803918    -0.468786
2    股票_2    0.218056    0.199014    0.713468    0.548426    0.386234
3    股票_3    -0.422079    -0.337024    0.423285    -1.230792    1.328438
4    股票_4    -1.725307    0.075918    -1.917084    -0.165358    1.076451
5    股票_5    -0.815768    -0.286753    1.204420    0.733660    -0.062145
6    股票_6    -0.988209    -1.018152    -0.954173    -0.815390    0.502682
7    股票_7    -0.100341    0.611962    -0.068503    0.747384    0.143011
8    股票_8    1.000262    0.342420    -2.252971    0.939211    1.140803
9    股票_9    2.520647    1.553848    1.722530    0.612701    0.608881

# 重置索引,drop=True
data.reset_index(drop=True)

2017-01-02 00:00:00    2017-01-03 00:00:00    2017-01-04 00:00:00    2017-01-05 00:00:00    2017-01-06 00:00:00
0    -0.065440    -1.309315    -1.454515    0.579730    1.486024
1    -1.732167    -0.834137    0.458615    -0.803918    -0.468786
2    0.218056    0.199014    0.713468    0.548426    0.386234
3    -0.422079    -0.337024    0.423285    -1.230792    1.328438
4    -1.725307    0.075918    -1.917084    -0.165358    1.076451
5    -0.815768    -0.286753    1.204420    0.733660    -0.062145
6    -0.988209    -1.018152    -0.954173    -0.815390    0.502682
7    -0.100341    0.611962    -0.068503    0.747384    0.143011
8    1.000262    0.342420    -2.252971    0.939211    1.140803
9    2.520647    1.553848    1.722530    0.612701    0.608881

以某列值设置为新的索引
  • set_index(keys, drop=True)

    • keys : 列索引名成或者列索引名称的列表
    • drop : boolean, default True.当做新的索引,删除原来的列
  • 设置新索引案例

1、创建

df = pd.DataFrame({'month': [1, 4, 7, 10],
                    'year': [2012, 2014, 2013, 2014],
                    'sale':[55, 40, 84, 31]})

   month  sale  year
0  1      55    2012
1  4      40    2014
2  7      84    2013
3  10     31    2014

2、以月份设置新的索引

df.set_index('month')
       sale  year
month
1      55    2012
4      40    2014
7      84    2013
10     31    2014

3、设置多个索引,以年和月份

df.set_index(['year', 'month'])
            sale
year  month
2012  1     55
2014  4     40
2013  7     84
2014  10    31

注:通过刚才的设置,这样DataFrame就变成了一个具有MultiIndex的DataFrame。

MultiIndex与Panel
df = pd.DataFrame({'month': [1, 4, 7, 10],
                    'year': [2012, 2014, 2013, 2014],
                    'sale':[55, 40, 84, 31]})
df = df.set_index(['year', 'month'])
df.index
#MultiIndex([(2012,  1),
#            (2014,  4),
#            (2013,  7),
#            (2014, 10)],
#           names=['year', 'month'])
MultiIndex

多级或分层索引对象。

  • index属性
    • names:levels的名称
    • levels:每个level的元组值
df.index.names
#FrozenList(['year', 'month'])
df.index.levels
#FrozenList([[2012, 2013, 2014], [1, 4, 7, 10]])
Panel

class pandas.Panel(data=None, items=None, major_axis=None, minor_axis=None, copy=False, dtype=None)

  • 存储3维数组的Panel结构
p = pd.Panel(np.arange(24).reshape(4,3,2),
                 items=list('ABCD'),
                 major_axis=pd.date_range('20130101', periods=3),
                 minor_axis=['first', 'second'])
p

<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: A to D
Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
Minor_axis axis: first to second
  • items - axis 0,每个项目对应于内部包含的数据帧(DataFrame)。
  • major_axis - axis 1,它是每个数据帧(DataFrame)的索引(行)。
  • minor_axis - axis 2,它是每个数据帧(DataFrame)的列。

查看panel数据:

p[:,:,"first"]
p["B",:,:]

注:Pandas从版本0.20.0开始弃用:推荐的用于表示3D数据的方法是通过DataFrame上的MultiIndex方法

如果获取DataFrame中某个股票的不同时间数据?这样的结构是什么样的?

Series结构

什么是Series结构呢,我们直接看下面的图:

在这里插入图片描述

  • series结构只有行索引

我们将之前的涨跌幅数据进行转置,然后获取’股票0’的所有数据

# series
type(data['2017-01-02'])
pandas.core.series.Series

# 这一步相当于是series去获取行索引的值
data['2017-01-02']['股票_0']
-0.18753158283513574
创建series

通过已有数据创建

  • 指定内容,默认索引
pd.Series(np.arange(10))
  • 指定索引
pd.Series([6.7,5.6,3,10,2], index=[1,2,3,4,5])

通过字典数据创建

pd.Series({'red':100, 'blue':200, 'green': 500, 'yellow':1000})
series获取属性和值
  • index
  • values
aa = pd.Series({'red':100, 'blue':200, 'green': 500, 'yellow':1000})
aa.index #Index(['red', 'blue', 'green', 'yellow'], dtype='object')
aa.values #array([ 100,  200,  500, 1000], dtype=int64)

基本数据操作

import pandas as pd
#为了更好的理解这些基本操作,我们将读取一个真实的股票数据。关于文件操作,后面在介绍,这里只先用一下API
# 读取文件
data = pd.read_csv("../data/stock_day.csv")

# 删除一些列,让数据更简单些,再去做后面的操作
data = data.drop(["ma5","ma10","ma20","v_ma5","v_ma10","v_ma20"], axis=1)
索引操作

Numpy当中我们已经讲过使用索引选取序列和切片选择,pandas也支持类似的操作,也可以直接使用列名、行名

称,甚至组合使用。

直接使用行列索引
  • 直接索引 – 先列后行,是需要通过索引的字符串进行获取
#获取'2018-02-27'这天的'close'的结果
# 直接使用行列索引名字的方式(先列后行)
data['open']['2018-02-27']
#23.53

# 不支持的操作
# 错误
#data['2018-02-27']['open']
# 错误
#data[:1, :2]
结合loc或者iloc使用索引
  • loc – 先行后列,是需要通过索引的字符串进行获取
  • iloc – 先行后列,是通过下标进行索引
# 获取从'2018-02-27':'2018-02-22','open'的结果
# 使用loc:只能指定行列索引的名字
data.loc['2018-02-27':'2018-02-22', 'open']
# 2018-02-27    23.53
# 2018-02-26    22.80
# 2018-02-23    22.88
# 2018-02-22    22.25
# Name: open, dtype: float64

# 使用iloc可以通过索引的下标去获取
# 获取前100天数据的'open'列的结果
data.iloc[0:100, 0:2].head()
# 	        open	high
# 2018-02-27	23.53	25.88
# 2018-02-26	22.80	23.78
# 2018-02-23	22.88	23.37
# 2018-02-22	22.25	22.76
# 2018-02-14	21.49	21.99
使用ix组合索引

Warning:Starting in 0.20.0, the .ix indexer is deprecated, in favor of the more strict .iloc and .loc indexers.

  • data.index[0:4] 获取行索引名称

  • data.columns.get_indexer([‘open’, ‘close’, ‘high’, ‘low’]) 通过列索引名称拿到列索引值

获取行第1天到第4天,['open', 'close', 'high', 'low']这个四个指标的结果
# 使用ix进行下表和名称组合做引
#data.ix[0:4, ['open', 'close', 'high', 'low']]

# 推荐使用loc和iloc来获取的方式
data.loc[data.index[0:4], ['open', 'close', 'high', 'low']]
data.iloc[0:4, data.columns.get_indexer(['open', 'close', 'high', 'low'])]


#			open	close	high	low
#2018-02-27	23.53	24.16	25.88	23.53
#2018-02-26	22.80	23.53	23.78	22.80
#2018-02-23	22.88	22.82	23.37	22.71
#2018-02-22	22.25	22.28	22.76	22.02

赋值操作

对DataFrame当中的close列进行重新赋值为1

# 直接修改原来的值
data['close'] = 1
# 或者
data.close = 1
排序

排序有两种形式,一种对于索引进行排序,一种对于内容进行排序

pandas.sort_values
  • 使用df.sort_values(by=, ascending=)
    • 单个键或者多个键进行排序,默认升序
    • ascending=False:降序
    • ascending=True:升序
# 按照涨跌幅大小进行排序 , 使用ascending指定按照大小排序
data = data.sort_values(by='p_change', ascending=False).head()
#			open  high close    low      volume  price_change  p_change  turnover
#2015-08-28	15.40	16.46	1	15.00	117827.60	1.50	10.03	4.03
#2015-05-21	27.50	28.22	1	26.50	121190.11	2.57	10.02	4.15
#2016-12-22	18.50	20.42	1	18.45	150470.83	1.86	10.02	3.77
#2015-08-04	16.20	17.35	1	15.80	94292.63	1.58	10.02	3.23
#2016-07-07	18.66	18.66	1	18.41	48756.55	1.70	10.02	1.67

# 按照多个键进行排序
data = data.sort_values(by=['open', 'high'])
#		  	open	high	close	low	volume	price_change	p_change	turnover
#2015-08-28	15.40	16.46	1	15.00	117827.60	1.50	10.03	4.03
#2015-08-04	16.20	17.35	1	15.80	94292.63	1.58	10.02	3.23
#2016-12-22	18.50	20.42	1	18.45	150470.83	1.86	10.02	3.77
#2016-07-07	18.66	18.66	1	18.41	48756.55	1.70	10.02	1.67
#2015-05-21	27.50	28.22	1	26.50	121190.11	2.57	10.02	4.15
pandas.sort_index
  • 使用df.sort_index给索引进行排序

这个股票的日期索引原来是从大到小,现在重新排序,从小到大

# 对索引进行排序
data.sort_index()
#			open	high	close	low	volume	price_change	p_change	turnover
#2015-05-21	27.50	28.22	1	26.50	121190.11	2.57	10.02	4.15
#2015-08-04	16.20	17.35	1	15.80	94292.63	1.58	10.02	3.23
#2015-08-28	15.40	16.46	1	15.00	117827.60	1.50	10.03	4.03
#2016-07-07	18.66	18.66	1	18.41	48756.55	1.70	10.02	1.67
#2016-12-22	18.50	20.42	1	18.45	150470.83	1.86	10.02	3.77
series.sort_values
  • 使用series.sort_values(ascending=True)进行排序

series排序时,只有一列,不需要参数

data['p_change'].sort_values(ascending=True).head()
#2015-08-04    10.02
#2016-12-22    10.02
#2016-07-07    10.02
#2015-05-21    10.02
#2015-08-28    10.03
#Name: p_change, dtype: float64
series.sort_index
  • 使用series.sort_index()进行排序

与df一致

# 对索引进行排序
data['p_change'].sort_index().head()
#2015-05-21    10.02
#2015-08-04    10.02
#2015-08-28    10.03
#2016-07-07    10.02
#2016-12-22    10.02
#Name: p_change, dtype: float64

DataFrame运算

算术运算
add(other)

比如进行数学运算加上具体的一个数字

data['open'].add(1)
#2015-08-28    16.40
#2015-08-04    17.20
#2016-12-22    19.50
#2016-07-07    19.66
#2015-05-21    28.50
#Name: open, dtype: float64
sub(other)

如果想要得到每天的涨跌大小?求出每天 close- open价格差

# 1、筛选两列数据
close = data['close']
open1 = data['open']
# 2、收盘价减去开盘价
data['m_price_change'] = close.sub(open1)
data.head()
	open	high	close	low	volume	price_change	p_change	turnover	m_price_change
#2015-08-28	15.40	16.46	1	15.00	117827.60	1.50	10.03	4.03	-14.40
#2015-08-04	16.20	17.35	1	15.80	94292.63	1.58	10.02	3.23	-15.20
#2016-12-22	18.50	20.42	1	18.45	150470.83	1.86	10.02	3.77	-17.50
#2016-07-07	18.66	18.66	1	18.41	48756.55	1.70	10.02	1.67	-17.66
#2015-05-21	27.50	28.22	1	26.50	121190.11	2.57	10.02	4.15	-26.50
逻辑运算
逻辑运算符号<、 >、|、 &

例如筛选p_change > 2的日期数据

  • data[‘p_change’] > 2返回逻辑结果
data['p_change'] > 2
#2015-08-28    True
#2015-08-04    True
#2016-12-22    True
#2016-07-07    True
#2015-05-21    True
#Name: p_change, dtype: bool

# 逻辑判断的结果可以作为筛选的依据
data[data['p_change'] > 2]
#open	high	close	low	volume	price_change	p_change	turnover	m_price_change
#2015-08-28	15.40	16.46	1	15.00	117827.60	1.50	10.03	4.03	-14.40
#2015-08-04	16.20	17.35	1	15.80	94292.63	1.58	10.02	3.23	-15.20
#2016-12-22	18.50	20.42	1	18.45	150470.83	1.86	10.02	3.77	-17.50
#2016-07-07	18.66	18.66	1	18.41	48756.55	1.70	10.02	1.67	-17.66
#2015-05-21	27.50	28.22	1	26.50	121190.11	2.57	10.02	4.15	-26.50

  • 完成一个多个逻辑判断, 筛选p_change > 2并且open > 15
data[(data['p_change'] > 2) & (data['open'] > 15)]
#	open	high	close	low	volume	price_change	p_change	turnover	m_price_change
#2015-08-28	15.40	16.46	1	15.00	117827.60	1.50	10.03	4.03	-14.40
#2015-08-04	16.20	17.35	1	15.80	94292.63	1.58	10.02	3.23	-15.20
#2016-12-22	18.50	20.42	1	18.45	150470.83	1.86	10.02	3.77	-17.50
#2016-07-07	18.66	18.66	1	18.41	48756.55	1.70	10.02	1.67	-17.66
#2015-05-21	27.50	28.22	1	26.50	121190.11	2.57	10.02	4.15	-26.50
逻辑运算函数
  • query(expr)
    • expr:查询字符串

通过query使得刚才的过程更加方便简单

data.query("p_change > 2 & open > 15")
  • isin(values)

例如判断’turnover’是否为4.03,3.23

# 可以指定值进行一个判断,从而进行筛选操作
data[data['turnover'].isin([4.03,3.23])]

#	open	high	close	low	volume	price_change	p_change	turnover	m_price_change
#2015-08-28	15.4	16.46	1	15.0	117827.60	1.50	10.03	4.03	-14.4
#2015-08-04	16.2	17.35	1	15.8	94292.63	1.58	10.02	3.23	-15.2

统计运算
describe()

综合分析: 能够直接得出很多统计结果,count, mean, std, min, max

# 计算平均值、标准差、最大值、最小值
data.describe()
#open	high	close	low	volume	price_change	p_change	turnover	m_price_change
#count	5.000000	5.000000	5.0	5.000000	5.000000	5.000000	5.000000	5.000000	5.000000
#mean	19.252000	20.222000	1.0	18.832000	106507.544000	1.842000	10.022000	3.370000	-18.252000
#std	4.824367	4.712963	0.0	4.555203	37950.208695	0.428976	0.004472	1.014101	4.824367
#min	15.400000	16.460000	1.0	15.000000	48756.550000	1.500000	10.020000	1.670000	-26.500000
#25%	16.200000	17.350000	1.0	15.800000	94292.630000	1.580000	10.020000	3.230000	-17.660000
#50%	18.500000	18.660000	1.0	18.410000	117827.600000	1.700000	10.020000	3.770000	-17.500000
#75%	18.660000	20.420000	1.0	18.450000	121190.110000	1.860000	10.020000	4.030000	-15.200000
#max	27.500000	28.220000	1.0	26.500000	150470.830000	2.570000	10.030000	4.150000	-14.400000
统计函数

Numpy当中已经详细介绍,在这里我们演示min(最小值), max(最大值), mean(平均值), median(中位数), var(方差), std(标准差),mode(众数)结果,

countNumber of non-NA observations
sumSum of values
meanMean of values
medianArithmetic median of values
minMinimum
maxMaximum
modeMode
absAbsolute Value
prodProduct of values
stdBessel-corrected sample standard deviation
varUnbiased variance
idxmaxcompute the index labels with the maximum
idxmincompute the index labels with the minimum

对于单个函数去进行统计的时候,坐标轴还是按照这些默认为“columns” (axis=0, default),如果要对行“index” 需要指定(axis=1)

  • max()、min()
# 使用统计函数:0 代表列求结果, 1 代表行求统计结果
data.max(0)

open                  27.50
high                  28.22
close                  1.00
low                   26.50
volume            150470.83
price_change           2.57
p_change              10.03
turnover               4.15
m_price_change       -14.40
dtype: float64
    
data.min(0)
open                 15.40
high                 16.46
close                 1.00
low                  15.00
volume            48756.55
price_change          1.50
p_change             10.02
turnover              1.67
m_price_change      -26.50
dtype: float64

  • std()、var()
# 方差
data.var(0)

open              2.327452e+01
high              2.221202e+01
close             0.000000e+00
low               2.074987e+01
volume            1.440218e+09
price_change      1.840200e-01
p_change          2.000000e-05
turnover          1.028400e+00
m_price_change    2.327452e+01
dtype: float64

# 标准差
data.std(0)

open                  4.824367
high                  4.712963
close                 0.000000
low                   4.555203
volume            37950.208695
price_change          0.428976
p_change              0.004472
turnover              1.014101
m_price_change        4.824367
dtype: float64
  • median():中位数

中位数为将数据从小到大排列,在最中间的那个数为中位数。如果没有中间数,取中间两个数的平均值。

df = pd.DataFrame({'COL1' : [2,3,4,5,4,2],
                   'COL2' : [0,1,2,3,4,2]})
df.median()

COL1    3.5
COL2    2.0
dtype: float64
  • idxmax()、idxmin()
# 求出最大值的位置
data.idxmax(axis=0)

open              2015-05-21
high              2015-05-21
close             2015-08-28
low               2015-05-21
volume            2016-12-22
price_change      2015-05-21
p_change          2015-08-28
turnover          2015-05-21
m_price_change    2015-08-28
dtype: object
 

# 求出最小值的位置
data.idxmin(axis=0)
open              2015-08-28
high              2015-08-28
close             2015-08-28
low               2015-08-28
volume            2016-07-07
price_change      2015-08-28
p_change          2015-08-04
turnover          2016-07-07
m_price_change    2015-05-21
dtype: object
    
累计统计函数
函数作用
cumsum计算前1/2/3/…/n个数的和
cummax计算前1/2/3/…/n个数的最大值
cummin计算前1/2/3/…/n个数的最小值
cumprod计算前1/2/3/…/n个数的积

那么这些累计统计函数怎么用?

在这里插入图片描述

以上这些函数可以对series和dataframe操作

这里我们按照时间的从前往后来进行累计

  • 排序
# 排序之后,进行累计求和
data = data.sort_index()
  • 对p_change进行求和
stock_rise = data['p_change']
# plot方法集成了前面直方图、条形图、饼图、折线图
stock_rise.cumsum()
2015-05-21    10.02
2015-08-04    20.04
2015-08-28    30.07
2016-07-07    40.09
2016-12-22    50.11
Name: p_change, dtype: float64

那么如何让这个连续求和的结果更好的显示呢?

在这里插入图片描述

import matplotlib.pyplot as plt
# plot显示图形
stock_rise.cumsum().plot()
# 需要调用show,才能显示出结果
plt.show()

关于plot,稍后会介绍API的选择

自定义运算
  • apply(func, axis=0)
    • func:自定义函数
    • axis=0:默认是列,axis=1为行进行运算
  • 定义一个对列,最大值-最小值的函数
data[['open', 'close']].apply(lambda x: x.max() - x.min(), axis=0)
open     12.1
close     0.0
dtype: float64

Pandas画图

pandas.DataFrame.plot
  • DataFrame.plot(x=None, y=None, kind=‘line’)
    • x : label or position, default None
    • y : label, position or list of label, positions, default None
      • Allows plotting of one column versus another
    • kind : str
      • ‘line’ : line plot (default)
      • ‘bar’ : vertical bar plot
      • ‘barh’ : horizontal bar plot
        • 关于“barh”的解释:
        • http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.barh.html
      • ‘hist’ : histogram
      • ‘pie’ : pie plot
      • ‘scatter’ : scatter plot

更多参数细节:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html?highlight=plot#pandas.DataFrame.plot

pandas.Series.plot

更多参数细节:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.plot.html?highlight=plot#pandas.Series.plot

文件读取与存储

们的数据大部分存在于文件当中,所以pandas会支持复杂的IO操作,pandas的API支持众多的文件格式,如CSV、SQL、XLS、JSON、HDF5。

注:最常用的HDF5和CSV文件

在这里插入图片描述

CSV
read_csv

pandas.read_csv(filepath_or_buffer, sep =’,’ )

  • filepath_or_buffer:文件路径
  • usecols:指定读取的列名,列表形式

读取之前的股票的数据

# 读取文件,并且指定只获取'open', 'close'指标
data = pd.read_csv("../data/stock_day.csv", usecols=['open', 'close'])
	open	close
2018-02-27	23.53	24.16
2018-02-26	22.80	23.53
2018-02-23	22.88	22.82
2018-02-22	22.25	22.28
2018-02-14	21.49	21.92
...	...	...
2015-03-06	13.17	14.28
2015-03-05	12.88	13.16
2015-03-04	12.80	12.90
2015-03-03	12.52	12.70
2015-03-02	12.25	12.52
643 rows × 2 columns
to_csv

DataFrame.to_csv(path_or_buf=None, sep=’, ’, columns=None, header=True, index=True, mode=‘w’, encoding=None)

  • path_or_buf :string or file handle, default None
  • sep :character, default ‘,’
  • columns :sequence, optional
  • mode:‘w’:重写, ‘a’ 追加
  • index:是否写进行索引
  • header :boolean or list of string, default True,是否写进列索引值

保存’open’列的数据

# 选取10行数据保存,便于观察数据
data[:10].to_csv("../data/test.csv", columns=['open'])

读取,查看结果

pd.read_csv("../data/test.csv")
Unnamed: 0	open
0	2018-02-27	23.53
1	2018-02-26	22.80
2	2018-02-23	22.88
3	2018-02-22	22.25
4	2018-02-14	21.49
5	2018-02-13	21.40
6	2018-02-12	20.70
7	2018-02-09	21.20
8	2018-02-08	21.79
9	2018-02-07	22.69

会发现将索引存入到文件当中,变成单独的一列数据。如果需要删除,可以指定index参数,删除原来的文件,重新保存一次。

# index:存储不会将索引值变成一列数据
data[:10].to_csv("../data/test.csv", columns=['open'], index=False)
pd.read_csv("../data/test.csv")
	open
0	23.53
1	22.80
2	22.88
3	22.25
4	21.49
5	21.40
6	20.70
7	21.20
8	21.79
9	22.69
HDF5
read_hdf
to_hdf

HDF5文件的读取和存储需要指定一个键,值为要存储的DataFrame

  • pandas.read_hdf(path_or_buf,key =None,** kwargs)

    从h5文件当中读取数据

    • path_or_buffer:文件路径
    • key:读取的键
    • return:Theselected object
  • DataFrame.to_hdf(path_or_buf, key, **kwargs)

#读取文件
day_eps_ttm = pd.read_hdf("../data/stock_data/day/day_eps_ttm.h5")

#存储文件
day_eps_ttm.to_hdf("../data/test.h5", key="day_eps_ttm")

#再次读取的时候, 需要指定键的名字
new_eps = pd.read_hdf("../data/test.h5", key="day_eps_ttm")

ImportError:HDFStore requires PyTables,"No module named ‘tables’"problem importing

需要安装安装tables模块避免不能读取HDF5文件

pip install tables
JSON

JSON是我们常用的一种数据交换格式,前面在前后端的交互经常用到,也会在存储的时候选择这种格式。所以我们需要知道Pandas如何进行读取和存储JSON格式。

read_json

pandas.read_json(path_or_buf=None, orient=None, typ=‘frame’, lines=False)

  • 将JSON格式准换成默认的Pandas DataFrame格式

  • orient : string,Indication of expected JSON string format.

    • ‘split’ : dict like {index -> [index], columns -> [columns], data -> [values]}

      • split 将索引总结到索引,列名到列名,数据到数据。将三部分都分开了
    • ‘records’ : list like [{column -> value}, … , {column -> value}]

      • records 以columns:values的形式输出
    • ‘index’ : dict like {index -> {column -> value}}

      • index 以index:{columns:values}...的形式输出
    • ‘columns’ : dict like {column -> {index -> value}}

      ,默认该格式

      • colums 以columns:{index:values}的形式输出
    • ‘values’ : just the values array

      • values 直接输出值
  • lines : boolean, default False

    • 按照每行读取json对象
  • typ : default ‘frame’, 指定转换成的对象类型series或者dataframe

#这里使用一个新闻标题讽刺数据集,格式为json。`is_sarcastic`:1讽刺的,否则为0;`headline`:新闻报道的标题;`article_link`:链接到原始新闻文章。存储格式为:
{"article_link": "https://www.huffingtonpost.com/entry/versace-black-code_us_5861fbefe4b0de3a08f600d5", "headline": "former versace store clerk sues over secret 'black code' for minority shoppers", "is_sarcastic": 0}
{"article_link": "https://www.huffingtonpost.com/entry/roseanne-revival-review_us_5ab3a497e4b054d118e04365", "headline": "the 'roseanne' revival catches up to our thorny political mood, for better and worse", "is_sarcastic": 0}

orient指定存储的json格式,lines指定按照行去变成一个样本

json_read = pd.read_json("../data/Sarcasm_Headlines_Dataset.json", orient="records", lines=True)

在这里插入图片描述

to_json
json_read.to_json("../data/test.json", orient='records')
#[{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/versace-black-code_us_5861fbefe4b0de3a08f600d5","headline":"former versace store clerk sues over secret 'black code' for minority shoppers","is_sarcastic":0},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/roseanne-revival-review_us_5ab3a497e4b054d118e04365","headline":"the 'roseanne' revival catches up to our thorny political mood, for better and worse","is_sarcastic":0},{"article_link":"https:\/\/local.theonion.com\/mom-starting-to-fear-son-s-web-series-closest-thing-she-1819576697","headline":"mom starting to fear son's web series closest thing she will have to grandchild","is_sarcastic":1},{"article_link":"https:\/\/politics.theonion.com\/boehner-just-wants-wife-to-listen-not-come-up-with-alt-1819574302","headline":"boehner just wants wife to listen, not come up with alternative debt-reduction ideas","is_sarcastic":1},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/jk-rowling-wishes-snape-happy-birthday_us_569117c4e4b0cad15e64fdcb","headline":"j.k. rowling wishes snape happy birthday in the most magical way","is_sarcastic":0},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/advancing-the-worlds-women_b_6810038.html","headline":"advancing the world's women","is_sarcastic":0},....]
  • 修改lines参数为True
json_read.to_json("./data/test.json", orient='records', lines=True)
{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/versace-black-code_us_5861fbefe4b0de3a08f600d5","headline":"former versace store clerk sues over secret 'black code' for minority shoppers","is_sarcastic":0}
{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/roseanne-revival-review_us_5ab3a497e4b054d118e04365","headline":"the 'roseanne' revival catches up to our thorny political mood, for better and worse","is_sarcastic":0}
{"article_link":"https:\/\/local.theonion.com\/mom-starting-to-fear-son-s-web-series-closest-thing-she-1819576697","headline":"mom starting to fear son's web series closest thing she will have to grandchild","is_sarcastic":1}
{"article_link":"https:\/\/politics.theonion.com\/boehner-just-wants-wife-to-listen-not-come-up-with-alt-1819574302","headline":"boehner just wants wife to listen, not come up with alternative debt-reduction ideas","is_sarcastic":1}
{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/jk-rowling-wishes-snape-happy-birthday_us_569117c4e4b0cad15e64fdcb","headline":"j.k. rowling wishes snape happy birthday in the most magical way","is_sarcastic":0}...
拓展

优先选择使用HDF5文件存储

  • HDF5在存储的时候支持压缩,使用的方式是blosc,这个是速度最快的也是pandas默认支持的
  • 使用压缩可以提磁盘利用率,节省空间
  • HDF5还是跨平台的,可以轻松迁移到hadoop 上面

高级处理-缺失值处理

在这里插入图片描述

如何处理nan
  • 判断数据是否为NaN:
    • pd.isnull(df),
    • pd.notnull(df)
  • 处理方式:
    • 存在缺失值nan,并且是np.nan:
      • 1、删除存在缺失值的:dropna(axis=‘rows’)
        • 注:不会修改原数据,需要接受返回值
      • 2、替换缺失值:fillna(value, inplace=True)
        • value:替换成的值
        • inplace:True:会修改原数据,False:不替换修改原数据,生成新的对象
    • 不是缺失值nan,有默认标记的
电影数据的缺失值处理
  • 电影数据文件获取
# 读取电影数据
movie = pd.read_csv("../data/IMDB-Movie-Data.csv")
pd.notnull()

判断缺失值是否存在

pd.notnull(movie)

在这里插入图片描述

import numpy as np
np.all(pd.notnull(movie))
#False

存在缺失值nan,并且是np.nan

  • 1、删除

pandas删除缺失值,使用dropna的前提是,缺失值的类型必须是np.nan

# 不修改原数据
movie.dropna()

# 可以定义新的变量接受或者用原来的变量名
data = movie.dropna()
  • 2、替换缺失值
# 替换存在缺失值的样本的两列
# 替换填充平均值,中位数
movie['Revenue (Millions)'].fillna(movie['Revenue (Millions)'].mean(), inplace=True)

替换所有缺失值:

for i in movie.columns:
    if np.all(pd.notnull(movie[i])) == False:
        print(i)
        movie[i].fillna(movie[i].mean(), inplace=True)

不是缺失值nan,有默认标记的

数据是这样的:

在这里插入图片描述

wis = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data")

#以上数据在读取时,可能会报如下错误:
URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:833)>
解决办法:
# 全局取消证书验证
import ssl
ssl._create_default_https_context = ssl._create_unverified_context

处理思路分析:

df.replace()
  • 1、先替换‘?’为np.nan
    • df.replace(to_replace=, value=)
      • to_replace:替换前的值
      • value:替换后的值
# 把一些其它值标记的缺失值,替换成np.nan
wis = wis.replace(to_replace='?', value=np.nan)
  • 2、在进行缺失值的处理
# 删除
wis = wis.dropna()

高级处理-数据离散化

为什么要离散化

连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数。离散化方法经常作为数据挖掘的工具。

什么是数据的离散化

连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值。

离散化有很多种方法,这使用一种最简单的方式去操作

  • 原始人的身高数据:165,174,160,180,159,163,192,184
  • 假设按照身高分几个区间段:150 ~ 165, 165 ~ 180,180 ~ 195

这样我们将数据分到了三个区间段,我可以对应的标记为矮、中、高三个类别,最终要处理成一个"哑变量"矩阵

在这里插入图片描述

股票的涨跌幅离散化

我们对股票每日的"p_change"进行离散化

读取股票的数据

data = pd.read_csv("../data/stock_day.csv")
p_change= data['p_change']

将股票涨跌幅数据进行分组

pd.qcut(data, bins)
series.value_counts()

使用的工具:

  • pd.qcut(data, bins):
    • 对数据进行分组将数据分组 一般会与value_counts搭配使用,统计每组的个数
  • series.value_counts():统计分组次数
# 自行分组
qcut = pd.qcut(p_change, 10)

2018-02-27    (1.738, 2.938]
2018-02-26     (2.938, 5.27]
2018-02-23    (1.738, 2.938]
2018-02-22     (0.94, 1.738]
2018-02-14    (1.738, 2.938]
                   ...      
2015-03-06     (5.27, 10.03]
2015-03-05    (1.738, 2.938]
2015-03-04     (0.94, 1.738]
2015-03-03     (0.94, 1.738]
2015-03-02    (1.738, 2.938]
Name: p_change, Length: 643, dtype: category
Categories (10, interval[float64]): [(-10.030999999999999, -4.836] < (-4.836, -2.444] < (-2.444, -1.352] < (-1.352, -0.462] ... (0.94, 1.738] < (1.738, 2.938] < (2.938, 5.27] < (5.27, 10.03]]


# 计算分到每个组数据个数
qcut.value_counts()
(5.27, 10.03]                    65
(0.26, 0.94]                     65
(-0.462, 0.26]                   65
(-10.030999999999999, -4.836]    65
(2.938, 5.27]                    64
(1.738, 2.938]                   64
(-1.352, -0.462]                 64
(-2.444, -1.352]                 64
(-4.836, -2.444]                 64
(0.94, 1.738]                    63
Name: p_change, dtype: int64
pd.cut(data, bins)

自定义区间分组:

  • pd.cut(data, bins)
# 自己指定分组区间
bins = [-100, -7, -5, -3, 0, 3, 5, 7, 100]
p_counts = pd.cut(p_change, bins)
2018-02-27      (0, 3]
2018-02-26      (3, 5]
2018-02-23      (0, 3]
2018-02-22      (0, 3]
2018-02-14      (0, 3]
                ...   
2015-03-06    (7, 100]
2015-03-05      (0, 3]
2015-03-04      (0, 3]
2015-03-03      (0, 3]
2015-03-02      (0, 3]
Name: p_change, Length: 643, dtype: category
Categories (8, interval[int64]): [(-100, -7] < (-7, -5] < (-5, -3] < (-3, 0] < (0, 3] < (3, 5] < (5, 7] < (7, 100]]
                                                                                         p_counts.value_counts()                  
(0, 3]        215
(-3, 0]       188
(3, 5]         57
(-5, -3]       51
(7, 100]       35
(5, 7]         35
(-100, -7]     34
(-7, -5]       28
Name: p_change, dtype: int64                                                                                                          
                                                                                                           
股票涨跌幅分组数据变成one-hot编码
  • 什么是one-hot编码

把每个类别生成一个布尔列,这些列中只有一列可以为这个样本取值为1.其又被称为热编码。

把下图中左边的表格转化为使用右边形式进行表示

在这里插入图片描述

pandas.get_dummies()

pandas.get_dummies(data, prefix=None)

  • data:array-like, Series, or DataFrame
  • prefix:分组名字
# 得出one-hot编码矩阵
dummies = pd.get_dummies(p_counts, prefix="rise")

在这里插入图片描述

高级处理-合并

pd.concat
  • pd.concat([data1, data2], axis=1)
    • 按照行或列进行合并,axis=0为列索引,axis=1为行索引

比如我们将刚才处理好的one-hot编码与原数据合并

在这里插入图片描述

pd.merge

pd.merge(left, right, how=‘inner’, on=None, left_on=None, right_on=None)

  • 可以指定按照两组数据的共同键值对合并或者左右各自
  • left: A DataFrame object
  • right: Another DataFrame object
  • how – 以何种方式连接
  • on: Columns (names) to join on. Must be found in both the left and right DataFrame objects.连接的键的依据是哪几个
  • left_on=None, right_on=None:指定左右键
Merge methodSQL Join NameDescription
leftLEFT OUTER JOINUse keys from left frame only
rightRIGHT OUTER JOINUse keys from right frame only
outerFULL OUTER JOINUse union of keys from both frames
innerINNER JOINUse intersection of keys from both frames
left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                        'key2': ['K0', 'K1', 'K0', 'K1'],
                        'A': ['A0', 'A1', 'A2', 'A3'],
                        'B': ['B0', 'B1', 'B2', 'B3']})

right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                        'key2': ['K0', 'K0', 'K0', 'K0'],
                        'C': ['C0', 'C1', 'C2', 'C3'],
                        'D': ['D0', 'D1', 'D2', 'D3']})

# 默认内连接
result = pd.merge(left, right, on=['key1', 'key2'])

在这里插入图片描述

  • 左连接
result = pd.merge(left, right, how='left', on=['key1', 'key2'])

在这里插入图片描述

  • 右连接
result = pd.merge(left, right, how='right', on=['key1', 'key2'])

在这里插入图片描述

  • 外链接
result = pd.merge(left, right, how='outer', on=['key1', 'key2'])

在这里插入图片描述

高级处理-交叉表与透视表

交叉表与透视表什么作用

探究股票的涨跌与星期几有关?

以下图当中表示,week代表星期几,1,0代表这一天股票的涨跌幅是好还是坏,里面的数据代表比例

可以理解为所有时间为星期一等等的数据当中涨跌幅好坏的比例

在这里插入图片描述

在这里插入图片描述

pd.crosstab()

使用crosstab(交叉表)实现上图

交叉表:交叉表用于计算一列数据对于另外一列数据的分组个数(寻找两个列之间的关系)

  • pd.crosstab(value1, value2)返回具体数量

案例分析

# 准备两列数据,星期数据以及涨跌幅是好是坏数据
# 进行交叉表计算
# 寻找星期几跟股票张得的关系
# 1、先把对应的日期找到星期几
date = pd.to_datetime(data.index).weekday
data['week'] = date

# 2、假如把p_change按照大小去分个类0为界限
data['posi_neg'] = np.where(data['p_change'] > 0, 1, 0)

# 通过交叉表找寻两列数据的关系
count = pd.crosstab(data['week'], data['posi_neg'])

在这里插入图片描述

但是我们看到count只是每个星期日子的好坏天数,并没有得到比例,该怎么去做?

  • 对于每个星期一等的总天数求和,运用除法运算求出比例
# 算数运算,先求和
sum = count.sum(axis=1).astype(np.float32)

# 进行相除操作,得出比例
pro = count.div(sum, axis=0)

使用plot画出这个比例,使用stacked的柱状图

pro.plot(kind='bar', stacked=True)
plt.show()

在这里插入图片描述

pivot_table
  • DataFrame.pivot_table([], index=[])
    使用pivot_table(透视表)实现
# 通过透视表,将整个过程变成更简单一些
data.pivot_table(['posi_neg'], index='week')

在这里插入图片描述

高级处理-分组与聚合

分组与聚合通常是分析数据的一种方式,通常与一些统计函数一起使用,查看数据的分组情况

想一想其实刚才的交叉表与透视表也有分组的功能,所以算是分组的一种形式,只不过他们主要是计算次数或者计算比例!!看其中的效果:

在这里插入图片描述

什么分组与聚合

在这里插入图片描述

分组API
DataFrame.groupby
  • DataFrame.groupby(key, as_index=False)
    • key:分组的列数据,可以多个
  • 案例:不同颜色的不同笔的价格数据
col =pd.DataFrame({'color': ['white','red','green','red','green'], 'object': ['pen','pencil','pencil','ashtray','pen'],'price1':[5.56,4.20,1.30,0.56,2.75],'price2':[4.75,4.12,1.60,0.75,3.15]})

color    object    price1    price2
0    white    pen    5.56    4.75
1    red    pencil    4.20    4.12
2    green    pencil    1.30    1.60
3    red    ashtray    0.56    0.75
4    green    pen    2.75    3.15
  • 进行分组,对颜色分组,price进行聚合
# 分组,求平均值
col.groupby(['color'])['price1'].mean()
col['price1'].groupby(col['color']).mean()

color
green    2.025
red      2.380
white    5.560
Name: price1, dtype: float64

# 分组,数据的结构不变
col.groupby(['color'], as_index=False)['price1'].mean()

color    price1
0    green    2.025
1    red    2.380
2    white    5.560
星巴克零售店铺数据

现在我们有一组关于全球星巴克店铺的统计数据,如果我想知道美国的星巴克数量和中国的哪个多,或者我想知道中国每个省份星巴克的数量的情况,那么应该怎么办?

数据来源:https://www.kaggle.com/starbucks/store-locations/data

在这里插入图片描述

# 导入星巴克店的数据
starbucks = pd.read_csv("../data/starbucks/directory.csv")
# 按照国家分组,求出每个国家的星巴克零售店数量
count = starbucks.groupby(['Country']).count()
#画图显示结果
count['Brand'].plot(kind='bar', figsize=(20, 8))
plt.show()
#假设我们加入省市一起进行分组
# 设置多个索引,set_index()
starbucks.groupby(['Country', 'State/Province']).count()

在这里插入图片描述

仔细观察这个结构,与我们前面讲的哪个结构类似??

与前面的MultiIndex结构类似

电影数据分析案例

现在我们有一组从2006年到2016年1000部最流行的电影数据,数据来源:https://www.kaggle.com/damianpanek/sunday-eda/data

  • 问题1:我们想知道这些电影数据中评分的平均分,导演的人数等信息,我们应该怎么获取?
  • 问题2:对于这一组电影数据,如果我们想rating,runtime的分布情况,应该如何呈现数据?
  • 问题3:对于这一组电影数据,如果我们希望统计电影分类(genre)的情况,应该如何处理数据?

首先获取导入包,获取数据

%matplotlib inline 
#%matplotlib inline 可以在Ipython编译器里直接使用,功能是可以内嵌绘图,并且可以省略掉plt.show()
import pandas  as pd 
import numpy as np
from matplotlib import pyplot as plt

#文件的路径
path = "../data/IMDB-Movie-Data.csv"
#读取文件
df = pd.read_csv(path)
问题一

我们想知道这些电影数据中评分的平均分,导演的人数等信息,我们应该怎么获取?

#得出评分的平均分
#使用mean函数
df["Rating"].mean()
#得出导演人数信息
#求出唯一值,然后进行形状获取
## 导演的人数
# df["Director"].unique().shape[0]
np.unique(df["Director"]).shape[0]

644
问题二

对于这一组电影数据,如果我们想Rating,Runtime (Minutes)的分布情况,应该如何呈现数据?

#直接呈现,以直方图的形式
#选择分数列数据,进行plot
df["Rating"].plot(kind='hist',figsize=(20,8))

在这里插入图片描述

  • Rating进行分布展示
#进行绘制直方图
plt.figure(figsize=(20,8),dpi=80)
plt.hist(df["Rating"].values,bins=20)


#修改刻度的间隔
# 求出最大最小值
max_ = df["Rating"].max()
min_ = df["Rating"].min()

# 生成刻度列表
t1 = np.linspace(min_,max_,num=21)

# [ 1.9    2.255  2.61   2.965  3.32   3.675  4.03   4.385  4.74   5.095  5.45   5.805  6.16   6.515  6.87   7.225  7.58   7.935  8.29   8.645  9.   ]

# 修改刻度
plt.xticks(t1)

# 添加网格
plt.grid()
plt.show()

在这里插入图片描述

  • Runtime (Minutes)进行分布展示
#进行绘制直方图
plt.figure(figsize=(20,8),dpi=80)
plt.hist(df["Runtime (Minutes)"].values,bins=20)


#修改间隔
# 求出最大最小值
max_ = df["Runtime (Minutes)"].max()
min_ = df["Runtime (Minutes)"].min()

# # 生成刻度列表
t1 = np.linspace(min_,max_,num=21)

# 修改刻度
plt.xticks(np.linspace(min_,max_,num=21))

# 添加网格
plt.grid()
plt.show()

在这里插入图片描述

问题三

对于这一组电影数据,如果我们希望统计电影分类(genre)的情况,应该如何处理数据?

  • 思路分析
    • 思路
      • 1、创建一个全为0的dataframe,列索引置为电影的分类,temp_df
      • 2、遍历每一部电影,temp_df中把分类出现的列的值置为1
      • 3、求和
  • 1、创建一个全为0的dataframe,列索引置为电影的分类,temp_df
# 进行字符串分割
temp_list = [i.split(",") for i in df["Genre"]]
# 获取电影的分类
genre_list = np.unique([i for j in temp_list for i in j]) 

# 增加新的列
temp_df = pd.DataFrame(np.zeros([df.shape[0],genre_list.shape[0]]),columns=genre_list)

在这里插入图片描述

  • 2、遍历每一部电影,temp_df中把分类出现的列的值置为1
for i in range(1000):
    #temp_list[i] ['Action','Adventure','Animation']
    temp_df.loc[temp_df.index[i],temp_list[i]]=1
print(temp_df.sum().sort_values())
  • 3、求和,绘图
temp_df.sum().sort_values(ascending=False).plot(kind="bar",figsize=(20,8),fontsize=20,colormap="cool")
Musical        5.0
Western        7.0
War           13.0
Music         16.0
Sport         18.0
History       29.0
Animation     49.0
Family        51.0
Biography     81.0
Fantasy      101.0
Mystery      106.0
Horror       119.0
Sci-Fi       120.0
Romance      141.0
Crime        150.0
Thriller     195.0
Adventure    259.0
Comedy       279.0
Action       303.0
Drama        513.0
dtype: float64

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值