系统辨识——线性时不变系统

协方差函数

假设 e ( t ) e(t) e(t)是均值为零,方差为 λ \lambda λ的白噪声
对扰动项的描述为
v ( t ) = ∑ k = 0 ∞ h ( k ) e ( t − k ) v(t)=\sum_{k=0}^{\infty}h(k)e(t-k) v(t)=k=0h(k)e(tk)

则扰动的均值为
E v ( t ) = ∑ k = 0 ∞ h ( k ) E e ( t − k ) = 0 Ev(t)=\sum_{k=0}^{\infty}h(k)Ee(t-k)=0 Ev(t)=k=0h(k)Ee(tk)=0

协方差为
E v ( t ) v ( t − τ ) = ∑ k = 0 ∞ ∑ s = 0 ∞ h ( k ) h ( s ) E e ( t − k ) e ( t − τ − s ) = ∑ k = 0 ∞ ∑ s = 0 ∞ h ( k ) h ( s ) δ ( k − τ − s ) λ = λ ∑ k = 0 ∞ h ( k ) h ( k − τ ) \begin{aligned} Ev(t)v(t-\tau)&=\sum_{k=0}^{\infty}\sum_{s=0}^{\infty}h(k)h(s)Ee(t-k)e(t-\tau-s)\\ &=\sum_{k=0}^{\infty}\sum_{s=0}^{\infty}h(k)h(s)\delta(k-\tau-s)\lambda\\ &=\lambda\sum_{k=0}^{\infty}h(k)h(k-\tau) \end{aligned} Ev(t)v(tτ)=k=0s=0h(k)h(s)Ee(tk)e(tτs)=k=0s=0h(k)h(s)δ(kτs)λ=λk=0h(k)h(kτ)
第一个等式为带入定义得到,第二个等式由白噪声的方差及独立信号在不同时刻的乘积的均值为0得到,第三个等式由脉冲信号的定义得到。
该协方差与时间 t t t 无关,定义扰动 v v v 的协方差函数为 R v ( τ ) = E v ( t ) v ( t − τ ) R_v(\tau)=Ev(t)v(t-\tau) Rv(τ)=Ev(t)v(tτ)

传递函数

将输出由脉冲响应表示:
y ( t ) = ∑ k = 1 ∞ g ( k ) u ( t − k ) = [ ∑ k = 1 ∞ g ( k ) q − k ] u ( t ) = G ( q ) u ( t ) y(t)=\sum_{k=1}^{\infty}g(k)u(t-k)=\left[\sum_{k=1}^{\infty}g(k)q^{-k}\right]u(t)=G(q)u(t) y(t)=k=1g(k)u(tk)=[k=1g(k)qk]u(t)=G(q)u(t)

G ( q ) G(q) G(q) 为传递函数, 因此一个带有加型扰动的线性系统可以表示为
y ( t ) = G ( q ) u ( t ) + H ( q ) e ( t ) y(t)=G(q)u(t)+H(q)e(t) y(t)=G(q)u(t)+H(q)e(t)

传递函数稳定的条件
∑ k = 1 ∞ ∣ g ( k ) ∣ &lt; ∞ \sum_{k=1}^{\infty}|g(k)|&lt;\infty k=1g(k)<

如果滤波器的零阶系数为 1 1 1,则称为 m o n i c monic monic

频域表示

欧拉公式 i x = c o s x + i s i n x ix=cosx+isinx ix=cosx+isinx

假设输入为 u ( t ) = c o s w t = Re  e i w t u(t)=coswt=\text{Re} \ e^{iwt} u(t)=coswt=Re eiwt
则输出为
y ( t ) = ∑ k = 1 ∞ g ( k ) Re  e i w ( t − k ) = Re  ∑ k = 1 ∞ g ( k ) e i w ( t − k ) = Re { e i w t ⋅ ∑ k = 1 ∞ g ( k ) e − i w k } = Re { e i w t ⋅ G ( e i w ) } = ∣ G ( e i w ) ∣ c o s ( w t + ϕ ) \begin{aligned} y(t)&amp;=\sum_{k=1}^{\infty}g(k)\text{Re}\ e^{iw(t-k)}=\text{Re}\ \sum_{k=1}^{\infty}g(k)e^{iw(t-k)}\\ &amp;=\text{Re}\left\{ e^{iwt}\cdot \sum_{k=1}^{\infty}g(k)e^{-iwk} \right\}=\text{Re}\left\{e^{iwt}\cdot G(e^{iw})\right\}\\ &amp;=|G(e^{iw})|cos(wt+\phi) \end{aligned} y(t)=k=1g(k)Re eiw(tk)=Re k=1g(k)eiw(tk)=Re{eiwtk=1g(k)eiwk}=Re{eiwtG(eiw)}=G(eiw)cos(wt+ϕ)

其中 ϕ = arg G ( e i w ) \phi=\text{arg}G(e^{iw}) ϕ=argG(eiw)
因此在输入 u ( t ) u(t) u(t) 的作用下,输出的频率不变,幅度扩大 ∣ G ( e i w ) ∣ |G(e^{iw})| G(eiw),相位增加了 arg  G ( e i w ) \text{arg}\ G(e^{iw}) arg G(eiw) 弧度。
frequency function: G ( e i w ) , − π ≤ w ≤ π G(e^{iw}),-\pi \le w\le\pi G(eiw),πwπ
Bode plot: log ∣ G ( e i w ) ∣ \text{log}|G(e^{iw})| logG(eiw) and arg  G ( e i w ) \text{arg}\ G(e^{iw}) arg G(eiw) plotted against log w \text{log}w logw.
Nyquist plot: The plot of frequency function in the complex plane.

周期图

离散傅里叶变换:对于 N N N 点序列 { x [ n ] } 0 ≤ n &lt; N \left\{ x[n] \right\}_{0\le n&lt; N} {x[n]}0n<N
DFT为
x ^ [ k ] = 1 N ∑ n = 0 N − 1 e − i 2 π N n k x [ n ] .   k = 0 , 1 , . . . , N − 1. \hat{x}[k]=\frac{1}{\sqrt{N}}\sum_{n=0}^{N-1}e^{-i\frac{2\pi}{N}nk}x[n]. \ k=0,1,...,N-1. x^[k]=N 1n=0N1eiN2πnkx[n]. k=0,1,...,N1.
IDFT为
x [ n ] = 1 N ∑ k = 0 N − 1 e i 2 π N n k x ^ [ k ] .   n = 0 , 1 , . . . , N − 1. x[n]=\frac{1}{\sqrt{N}}\sum_{k=0}^{N-1}e^{i\frac{2\pi}{N}nk}\hat{x}[k]. \ n=0,1,...,N-1. x[n]=N 1k=0N1eiN2πnkx^[k]. n=0,1,...,N1.

考虑有限输入序列 u ( t ) , t = 1 , . . . , N u(t), t=1,...,N u(t),t=1,...,N.
定义
U N ( w ) = 1 N ∑ t = 1 N u ( t ) e − i w t U_N(w)=\frac{1}{\sqrt{N}}\sum_{t=1}^{N}u(t)e^{-iwt} UN(w)=N 1t=1Nu(t)eiwt

其中, w = 2 π N k . k = 1 , . . . , N w=\frac{2\pi}{N}k.k=1,...,N w=N2πk.k=1,...,N,对应的有
u ( t ) = 1 N ∑ k = 1 N U N ( 2 π N k ) e i 2 π N k t u(t)=\frac{1}{\sqrt{N}}\sum_{k=1}^{N}U_N(\frac{2\pi}{N}k)e^{i\frac{2\pi}{N}kt} u(t)=N 1k=1NUN(N2πk)eiN2πkt

也经常写成
u ( t ) = 1 N ∑ k = − N / 2 + 1 N / 2 U N ( 2 π N k ) e i 2 π N k t u(t)=\frac{1}{\sqrt{N}}\sum_{k=-N/2+1}^{N/2}U_N(\frac{2\pi}{N}k)e^{i\frac{2\pi}{N}kt} u(t)=N 1k=N/2+1N/2UN(N2πk)eiN2πkt

可以将输入 u ( t ) u(t) u(t) 看为 N N N 个不同频率 w w w e i w t e^{iwt} eiwt 的线性组合,其中 U N ( 2 π k / N ) U_N(2\pi k/N) UN(2πk/N) 可以看做是频率为 w = 2 π k / N w=2\pi k/N w=2πk/N 的输入分量相应的权重。因此 ∣ U N ( 2 π k / N ) ∣ 2 |U_N(2\pi k/N)|^2 UN(2πk/N)2 可以用来衡量不同频率对信号功率的贡献,即 ∣ U N ( w ) ∣ 2 |U_N(w)|^2 UN(w)2 为信号 u ( t ) , t = 1 , . . . , N u(t), t=1,...,N u(t),t=1,...,N 的周期图。

根据欧拉公式及积分离散化的原理,有如下关系成立
1 N ∑ k = 1 N e i 2 π N r k = { 1 , r = 0 0 , 1 ≤ r &lt; N \frac{1}{N}\sum_{k=1}^{N}e^{i\frac{2\pi}{N}rk}=\left\{ \begin{array}{} 1,&amp;r=0\\ 0,&amp;1\le r &lt;N \end{array} \right. N1k=1NeiN2πrk={1,0,r=01r<N

Parseval定理
∑ k = 1 N ∣ U N ( 2 π N k ) ∣ 2 = ∑ t = 1 N u 2 ( t ) \sum_{k=1}^{N}|U_N(\frac{2\pi}{N}k)|^2=\sum_{t=1}^Nu^2(t) k=1NUN(N2πk)2=t=1Nu2(t)

周期图的转化

稳定系统
s ( t ) = G ( q ) w ( t ) s(t)=G(q)w(t) s(t)=G(q)w(t)

假设 w ( t ) w(t) w(t) t ≤ 0 t\le 0 t0 的值未知,但有 ∣ w ( t ) ∣ ≤ C w |w(t)|\le C_w w(t)Cw,则
S N ( w ) = G ( e i w ) W N ( w ) + R N ( w ) S_N(w)=G(e^{iw})W_N(w)+R_N(w) SN(w)=G(eiw)WN(w)+RN(w)

其中, ∣ R N ( w ) ∣ ≤ 2 C w ⋅ C G N , C G = ∑ k = 1 ∞ k ∣ g ( k ) ∣ |R_N(w)|\le 2C_w \cdot \frac{C_G}{\sqrt{N}},C_G=\sum_{k=1}^{\infty}k|g(k)| RN(w)2CwN CG,CG=k=1kg(k)

信号谱

定义信号 s s s 的谱为
lim ⁡ N → ∞ ∣ S N ( w ) ∣ 2 \lim_{N\rightarrow \infty}|S_N(w)|^2 NlimSN(w)2

实际中这一极限往往不存在

对于系统
y ( t ) = G ( q ) u ( t ) + H ( q ) e ( t ) y(t)=G(q)u(t)+H(q)e(t) y(t)=G(q)u(t)+H(q)e(t)

该过程不是一个平稳过程。
定义 准平稳信号 { s ( t ) } \{s(t)\} {s(t)} 满足

  1. E s ( t ) = m s ( t ) .   ∣ m s ( t ) ∣ ≤ C .   ∀ t Es(t)=m_s(t).\ |m_s(t)|\le C. \ \forall t Es(t)=ms(t). ms(t)C. t

  2. E s ( t ) s ( r ) = R s ( t , r ) .   ∣ R s ( t , r ) ∣ ≤ C Es(t)s(r)=R_s(t,r).\ |R_s(t,r)|\le C Es(t)s(r)=Rs(t,r). Rs(t,r)C

    lim ⁡ N → ∞ 1 N ∑ t = 1 N R ( t , t − τ ) = R s ( τ ) .   ∀ τ \lim_{N \rightarrow \infty} \frac{1}{N}\sum_{t=1}^{N}R(t,t-\tau)=R_s(\tau). \ \forall \tau NlimN1t=1NR(t,tτ)=Rs(τ). τ

频谱的定义:自相关(互相关)函数的离散傅里叶变换
Φ s ( w ) = ∑ τ = − ∞ ∞ R s ( τ ) e − i τ w \Phi_s(w)=\sum_{ \tau =-\infty}^{\infty}R_s(\tau)e^{-i\tau w} Φs(w)=τ=Rs(τ)eiτw

Φ s w ( w ) = ∑ τ = − ∞ ∞ R s w ( τ ) e − i τ w \Phi_{sw}(w)=\sum_{ \tau =-\infty}^{\infty}R_{sw}(\tau)e^{-i\tau w} Φsw(w)=τ=Rsw(τ)eiτw

随机过程 v ( t ) = H ( q ) e ( t ) v(t)=H(q)e(t) v(t)=H(q)e(t) { e ( t ) } \{e(t)\} {e(t)} 是零均值协方差为 λ \lambda λ 独立随机变量,有
Φ v ( w ) = λ ∣ H ( e i w ) ∣ 2 \Phi_v(w)=\lambda |H(e^{iw})|^2 Φv(w)=λH(eiw)2

信号叠加的频谱

符号定义
E ˉ f ( t ) = lim ⁡ N → ∞ 1 N ∑ t = 1 N E f ( t ) \bar{E}f(t)=\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{t=1}^{N}Ef(t) Eˉf(t)=NlimN1t=1NEf(t)

假设信号为
s ( t ) = u ( t ) + v ( t ) s(t)=u(t)+v(t) s(t)=u(t)+v(t)

其中 u ( t ) {u(t)} u(t) 是确定信号, v ( t ) {v(t)} v(t) 是零均值的平稳随机过程,则
E ˉ s ( t ) s ( t − τ ) = E ˉ u ( t ) u ( t − τ ) + E ˉ u ( t ) v ( t − τ ) + E ˉ v ( t ) u ( t − τ ) + E ˉ v ( t ) v ( t − τ ) = R u ( τ ) + R v ( τ ) \begin{aligned} \bar{E}s(t)s(t-\tau)&amp;=\bar{E}u(t)u(t-\tau)+\bar{E}u(t)v(t-\tau)\\ &amp;+\bar{E}v(t)u(t-\tau)+\bar{E}v(t)v(t-\tau)\\ &amp;=R_u(\tau)+R_v(\tau) \end{aligned} Eˉs(t)s(tτ)=Eˉu(t)u(tτ)+Eˉu(t)v(tτ)+Eˉv(t)u(tτ)+Eˉv(t)v(tτ)=Ru(τ)+Rv(τ)

由于 E ˉ v ( t ) u ( t − τ ) = 0 \bar{E}v(t)u(t-\tau)=0 Eˉv(t)u(tτ)=0,所以
Φ s ( w ) = Φ u ( w ) + Φ v ( w ) \Phi_s(w)=\Phi_u(w)+\Phi_v(w) Φs(w)=Φu(w)+Φv(w)

线性系统的频谱转换

假设频谱为 Φ w ( w ) \Phi_w(w) Φw(w) 的准平稳 (quasi-stationary) 信号 { w ( t ) } \{w(t)\} {w(t)} 经过稳定的线性系统 G ( q ) G(q) G(q) 滤波后为
s ( t ) = G ( q ) w ( t ) s(t)=G(q)w(t) s(t)=G(q)w(t)

满足 s ( t ) s(t) s(t) 也是准平稳信号且
Φ s ( w ) = ∣ G ( e i w ) ∣ 2 Φ w ( w ) Φ s w ( w ) = G ( e i w ) Φ w ( w ) \begin{aligned} \Phi_s(w)&amp;=|G(e^{iw})|^2\Phi_w(w) \\ \Phi_{sw}(w)&amp;=G(e^{iw})\Phi_w(w) \end{aligned} Φs(w)Φsw(w)=G(eiw)2Φw(w)=G(eiw)Φw(w)

给定 y ( t ) = G ( q ) u ( t ) + H ( q ) e ( t ) y(t)=G(q)u(t)+H(q)e(t) y(t)=G(q)u(t)+H(q)e(t)其中 { u ( t ) } \{u(t) \} {u(t)} 为频谱为 Φ u ( w ) \Phi_u(w) Φu(w) 的准平稳确定信号, { e ( t ) } \{e(t) \} {e(t)} 为方差 λ \lambda λ 的白噪声, G , H G,H G,H 为稳定滤波器,则 { y ( t ) } \{y(t)\} {y(t)} 是准平稳的且满足
Φ y ( w ) = ∣ G ( e i w ) ∣ 2 Φ u ( w ) + λ ∣ H ( e i w ) ∣ 2 Φ y u ( w ) = G ( e i w ) Φ u ( w ) \begin{aligned} \Phi_y(w)&amp;=|G(e^{iw})|^2\Phi_u(w)+\lambda|H(e^{iw})|^2\\ \Phi_{yu}(w)&amp;=G(e^{iw})\Phi_u(w) \end{aligned} Φy(w)Φyu(w)=G(eiw)2Φu(w)+λH(eiw)2=G(eiw)Φu(w)

谱分解

传递函数 G ( q ) , H ( q ) G(q),H(q) G(q),H(q) 通常是 q q q 的有理函数,频谱是 e i w e^{iw} eiw 的实值有理函数。
那么如果给定频谱 Φ v ( w ) \Phi_v(w) Φv(w), 如何求得传递函数 H ( q ) H(q) H(q) 满足 v ( t ) = H ( q ) e ( t ) v(t)=H(q)e(t) v(t)=H(q)e(t), 其中 { e ( t ) } \{ e(t)\} {e(t)} 为白噪声。
假设 Φ v ( w ) &gt; 0 \Phi_v(w)&gt;0 Φv(w)>0 c o s w cosw cosw e i w e^{iw} eiw 的有理函数,那么可以构造一个monic有理函数 R ( z ) R(z) R(z),其零极点均在单位圆内且满足
Φ v ( w ) = λ ∣ R ( e i w ) ∣ 2 \Phi_v(w)=\lambda|R(e^{iw})|^2 Φv(w)=λR(eiw)2假设平稳过程 { v ( t ) } \{ v(t)\} {v(t)} 具有有理频谱 Φ v ( w ) \Phi_v(w) Φv(w). 可以表示为
v ( t ) = R ( q ) e ( t ) v(t)=R(q)e(t) v(t)=R(q)e(t) 其中 { e ( t ) } \{ e(t)\} {e(t)} 是方差为 λ \lambda λ 的白噪声, R ( q ) R(q) R(q) 为有理函数且满足
R ( q ) = C ( q ) A ( q ) = 1 + c 1 q − 1 + . . . + c n c q − n c 1 + a 1 q − 1 + . . . + a n a q − n a R(q)=\frac{C(q)}{A(q)}=\frac{1+c_1q^{-1}+...+c_{n_c}q^{-n_c}}{1+a_1q^{-1}+...+a_{n_a}q^{-n_a}} R(q)=A(q)C(q)=1+a1q1+...+anaqna1+c1q1+...+cncqnc因此也就能用ARMA模型,AR模型或MA模型来描述这一过程。

Remark

以上结论均针对SISO过程,对于多变量系统,详见(Ljung,1999)

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值