- 博客(28)
- 收藏
- 关注
原创 数学基础组队学习
线代组队学习纲要线性方程组向量:加法、数乘矩阵:加法、数乘、结合律、分配律矩阵乘以向量意味着对向量做变换,一个矩阵代表一个变换逆矩阵矩阵和矩阵的乘法:批量把矩阵中的向量经过另一个矩阵的变换行列式:二阶行列式,两个行向量夹成的平行四边形的面积范数:衡量向量长度(大小)的量。l0、1、2、p、无穷范数对角化相似矩阵特征值和特征向量,某个矩阵变换下方向在同一直线正交矩阵,向量旋转,每一行是单位向量,两两行互相正交施密特正交化二次型、正定负定行列式一个矩阵的行列式就是一个平行多面体
2021-10-12 22:44:53 152
转载 sublime添加license
首先更改host文件hosts地址: C:\Windows\System32\drivers\etc添加内容:127.0.0.1 www.sublimetext.com127.0.0.1 sublimetext.com127.0.0.1 sublimehq.com127.0.0.1 telemetry.sublimehq.com127.0.0.1 license.sublime...
2019-10-07 19:21:54 2454
原创 #数值优化算法#一维极值之黄金分割
黄金分割法也叫0.618法,是一种基于区间收缩的极小值搜索算法。比如以 [a,b][a,b][a,b] 为区间,产生两个内点x1=a+0.382∗(b−a)x2=a+0.618∗(b−a)x_1 = a + 0.382*(b-a)\\x_2 = a + 0.618*(b-a)x1=a+0.382∗(b−a)x2=a+0.618∗(b−a)然后根据 f(x1),f(x2)f(x_1)...
2019-07-06 21:55:45 802
原创 递推最小二乘RLS推导
批次的最小二乘是给定一批数据比如 {yi∈R,xi∈Rn,i=1,...,N}\{y_i\in\mathbb{R},x_i\in \mathbb{R}^n,i=1,...,N\}{yi∈R,xi∈Rn,i=1,...,N},满足yi=xiTθy_i = x_i^T\theta yi=xiTθ 从而辨识 n×1n \times 1n×1维参数向量 θ=[θ1,...,θn]\theta ...
2019-05-03 11:31:47 15714 3
原创 李宏毅机器学习——Transfer learning迁移学习
Transfer Learning要做的是:假设现在手上有与现在进行的task没有直接相关的data,使用这些data来帮助做一些事情。比如现在要做猫狗的分类器,所谓不直接相关的data就可能是Similar domain, different tasks(大象与老虎的图片,与猫狗图片的分布是相像的)Different domain, same task(猫狗的卡通图片,与猫狗图片的分布...
2019-05-02 08:57:12 1037
原创 机器学习——高斯过程
高斯过程所谓高斯,即高斯分布所谓过程,即随机过程高斯分布一维高斯p(x)=N(μ,σ2)p(x)=N(\mu, \sigma^2)p(x)=N(μ,σ2)高维高斯多元高斯分布——高斯网络 x∈Rpx\in \mathbb{R}^px∈Rpp(x)=N(μ,Σ),Σp×p,p<infp(x)=N(\mu,\Sigma),\Sigma_{p\times p},p&...
2019-04-24 21:33:54 1332
原创 李宏毅机器学习——非监督学习(线性模型)
聚类需要多少类?empiricalK-means步骤:初始化k个聚类中心每个样本算和各个聚类中心的距离,归类到最近的中心点所在的类,更新聚类中心,重复这一步骤Hierarchical Agglomerative Clustering步骤建树结构选择threshold聚类:一个对象必须属于某一类,以偏概全,引出了distributed representation降维...
2019-04-22 18:51:29 329
原创 李宏毅机器学习——半监督学习
定义半监督学习:存在无标签数据,通常需要一些假设生成式模型EM算法Step1: 计算无标签数据先验概率Pθ(C1∣xu) P_{\theta}\left(C_{1} | x^{u}\right) Pθ(C1∣xu)Step2:更新模型Low density separationself-trainingRepeat:用已有标签数据训练模型用模型去得到无标签数据的pse...
2019-04-22 14:11:11 278
原创 李宏毅机器学习——神经网络(Why Deep)
多层神经网络有利于模块化(modularization),也就是简单特征组成复杂特征deep有利于更少data
2019-04-21 17:13:32 344
原创 李宏毅机器学习——CNN
CNNConvolution经过filter得到feature map是full connected的特例Max Pooling选最大的做代表Flatten如何在Keras使用CNNmodel.add(Convolution2D(25,3,3,input_shape = (28,28,1)))经过卷积后,变成了25*26*26的维度model.add(MaxPool...
2019-04-21 16:38:54 214
原创 李宏毅机器学习——Deep learning
历史1958年:感知机(线性模型)1980s:多层感知机1986:Backpropagation1989:1 hidden layer is “good enough”,why deep?2006:受限玻尔兹曼机(突破)2009:GPUSTEPdefine a set of function给定网络结构,相当于定义函数集得到参数后一个network就是一个function...
2019-04-19 17:33:57 213
原创 李宏毅机器学习——分类
分类信用评分——是否借款医疗诊断——什么病字迹识别——什么字人脸识别——什么人How用回归来分类?不合适,离群点会影响回归结果分类的角度应该是绿色线为分界,用回归的准则为了减小误差会得到紫色线Generative ModelPokemon例子:训练集:79water,61normalP(C1)=0.56,P(C2)=0.44P(C_1)=0.56,P(C_2)=0.44P(...
2019-04-19 14:33:11 257
原创 拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
Case 1:无约束的优化命题比如(1)minJ=x12+x22+x32+x42 \min J=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \tag{1} minJ=x12+x22+x32+x42(1)目标函数的最小值为 000,且各变量取值为 000Case 2:带一个等式约束的优化命题(2)(1) s.t.&nb...
2019-04-18 10:10:48 258
原创 线性代数的理解
矩阵矩阵代表一个特定的线性变换相当于用原来的scalars对新的基进行线性组合非方阵列空间的维数与输入空间的维数相等,即矩阵有几列说明输入空间的向量有几维(也等于基向量的个数)行列式数值代表面积(体积)的变化,符号代表空间是否被翻转。行列式为0说明矩阵变换降维了,也说明矩阵不可逆,也表明会有一系列原来不是零向量的向量落到了零向量的位置,所有这些向量的集合构成了零空间秩列空间的维...
2019-04-16 23:55:22 334
原创 python刷题记录(持续更新中)
数组给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度。思路:两个指针class Solution: def removeDuplicates(self, nums: List[int]) -> int: if (len(nums) == 0): return 0; i ...
2019-04-14 14:55:53 414
原创 Python——numpy基础
首先先导入库import numpy as np 创建矩阵#创建一维的narray对象a = np.array([1,2,3,4,5])#创建二维的narray对象a = np.array([[1,2,3,4,5],[6,7,8,9,10]])a1 = np.arange(10) # 默认从0开始到10(不包括10),步长为1print(a1) # 返回 [0 1 2 3 4 5...
2019-03-25 17:58:35 256
原创 李宏毅机器学习笔记——回归
回归A set of function: y=b+w⋅xcpy=b+w\cdot x_{cp}y=b+w⋅xcpGoodness of function: L(f)=∑(y^−f(xcpn))2L(f)=\sum(\hat{y}-f(x_{cp}^n))^2L(f)=∑(y^−f(xcpn))2,Pick the “best” function f∗=argminfL(f)f...
2019-03-24 19:40:51 279
翻译 神经网络入门教程
神经元考虑一个2入 xT=[x1 x2]x^T=[x_1\ x_2]xT=[x1 x2] 1出 yyy 的神经元y=f(wTx+b)y=f(w^Tx+b)y=f(wTx+b)wT=[w1 w2]w^T=[w_1\ w_2]wT=[w1 w2]为权重,bbb 为偏置,fff 为激活函数import numpy as npdef sigmo...
2019-03-16 21:26:21 232
原创 文献记录——Experiment Design with Applications in Identification for Control
预报误差法Example 1.1假设FIR模型y(t,θ)=b0u(t−1)+b1u(t−2)+e(t)y(t,\theta)=b_0u(t-1)+b_1u(t-2)+e(t)y(t,θ)=b0u(t−1)+b1u(t−2)+e(t)一步预测为y^(t,θ)=b0u(t−1)+b1u(t−2)=θTφ(t)\begin{aligned}\hat{y}(t,\theta)&amp...
2019-03-07 16:38:00 208
原创 机器学习——PCA实例+matlab
假设有 mmm 条 nnn 维数据构成矩阵 Xn×mX_{n\times m }Xn×m:X=(−1−1020−20011)X=\left( {\begin{matrix}{ - 1}&amp;amp;{ - 1}&amp;amp;0&amp;amp;2&amp;amp;0\\{ - 2}&amp;amp;0&amp;amp;0&amp;amp;1&amp;amp;1\
2019-03-06 22:19:05 856 1
翻译 系统辨识工具箱使用指南
Matlab系统辨识(system identification)工具箱使用指南导入数据load dryer2在app上导入时域数据,选择输入输出变量、设置起始时间和采样时间画图(Time plot),若均值非零则需要去均值 &lt;–Preprocess &gt; Remove means将用于估计模型的数据拖入 Working Data数据分段,用于辨识和验证 &lt;–Pr...
2019-03-05 22:06:33 6670 7
原创 书籍和文献下载
Library Genesis。网站上(http://gen.lib.rus.ec/)网址为:1、http://gen.lib.rus.ec/2、http://libgen.io/3、http://libgen.org/4、http://libgen.io/scimag/从Library Genesis下载不了的还可以从网页直接链接到Sci-Hub下载。BookSC网站(htt...
2019-03-02 13:14:17 930
原创 系统辨识——动态过程和信号的模型
本文将为浙大控制系朱豫才老师《系统辨识》课程的部分笔记线性时不变SISO过程微分方程描述 ⟶Laplace\stackrel{Laplace}{\longrightarrow}⟶Laplace 传递函数描述微分方程描述 ⟶辅助变量\stackrel{辅助变量}{\longrightarrow}⟶辅助变量 状态空间描述 ⟶C(sI−A)−1B+D\stackrel{C(sI-A)^{-1}...
2019-02-26 20:46:24 2014
原创 系统辨识——线性时不变系统
协方差函数假设e(t)e(t)e(t)是均值为零,方差为λ\lambdaλ的白噪声对扰动项的描述为v(t)=∑k=0∞h(k)e(t−k)v(t)=\sum_{k=0}^{\infty}h(k)e(t-k)v(t)=k=0∑∞h(k)e(t−k)则扰动的均值为Ev(t)=∑k=0∞h(k)Ee(t−k)=0Ev(t)=\sum_{k=0}^{\infty}h(k)Ee(t-k)=...
2019-02-26 15:30:03 1548
原创 数字信号处理基本概念
数字信号处理基本概念离散时间信号连续和离散指的是定义域,信号的值域可以是连续的也可以是不连续的。模拟信号是连续信号的一个子集,数字信号是离散信号的一个子集。你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。典型信号单位冲激信号是单位阶跃信号的一次差分。脉冲信号也称...
2019-02-26 09:23:51 4244
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人