CNN
Convolution
经过filter得到feature map
是full connected的特例
Max Pooling
选最大的做代表
Flatten
如何在Keras使用CNN
model.add(Convolution2D(25,3,3,input_shape = (28,28,1)))
经过卷积后,变成了25*26*26的维度
model.add(MaxPooling2D((2,2)))
经过maxpooliung后变成25*13*13的维度
model.add(Flatten())
分析
- 看一看第一层layer的filter
- 找CNN学的东西——求解使得某个filter激活度最高的输入(Find an image maximizing the output of neuron)
a k = ∑ i = 1 11 ∑ j = 1 11 a i j k x ∗ = arg max x a k a^{k}=\sum_{i=1}^{11} \sum_{j=1}^{11} a_{i j}^{k}\\ x^{*}=\arg \max _{x} a^{k} ak=i=1∑11j=1∑11aijkx∗=argxmaxak
CNN用在围棋,(没有用maxpooling)