李宏毅机器学习——CNN

CNN

在这里插入图片描述

Convolution

经过filter得到feature map
是full connected的特例
在这里插入图片描述

Max Pooling

选最大的做代表

在这里插入图片描述

Flatten

在这里插入图片描述

如何在Keras使用CNN

model.add(Convolution2D(25,3,3,input_shape = (28,28,1)))

在这里插入图片描述
经过卷积后,变成了25*26*26的维度

model.add(MaxPooling2D((2,2)))

在这里插入图片描述
经过maxpooliung后变成25*13*13的维度
model.add(Flatten())

在这里插入图片描述

分析

  1. 看一看第一层layer的filter
  2. 找CNN学的东西——求解使得某个filter激活度最高的输入(Find an image maximizing the output of neuron)
    a k = ∑ i = 1 11 ∑ j = 1 11 a i j k x ∗ = arg ⁡ max ⁡ x a k a^{k}=\sum_{i=1}^{11} \sum_{j=1}^{11} a_{i j}^{k}\\ x^{*}=\arg \max _{x} a^{k} ak=i=111j=111aijkx=argxmaxak
    CNN用在围棋,(没有用maxpooling)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值