204:Count Primers

target:Count the number of prime numbers less than a non-negative number n

我第一次编写的解决代码,时间复杂度是O(n2),在40多万时就挂了。

	//O(n2),cost too much time
	public int simplecountPrimes(int n) {
		int num = 0;
		for (int i = 2; i < n; i++) {
			boolean flag = isPrimer(i);
			if(flag == true){
				num++;
			}
		}
		return num;
	  }
	public boolean isPrimer(int m){
		boolean flag = true;
		for (int i = 2; i < m; i++) {
			int remainder = m%i;
			if(remainder==0){
				flag = false;
				break;
			}
		}
		return flag;
	}


这里着重介绍埃拉托斯特尼筛法(Sieve of Eratosthenes):

核心思想:逐个遍历数字,数字的倍数必然不是素数,直接去除。

p * q = n; 当p大于q之后,内容出现重复,故我们只需要思考p <√n的开方内的数字的遍历

同样的根据上面这行思想,当我们对√n以下数字遍历时,我们考虑的倍数的起点一定是i * i (此时正在遍历的数字)

	//Sieve of Eratosthenes, O(nlglgn)
	public int countPrimers(int n){
		int num = 0;
		boolean[] isPrimers = new boolean[n];
		for (int i = 0; i < isPrimers.length; i++) {
			isPrimers[i] = true;
		}
		for (int i = 2; i*i < n; i++) {
			if(!isPrimers[i]){
				continue;
			}
			for(int j = i*i;j < n ;j += i){
				isPrimers[j] = false;
			}
		}
		for (int i = 2; i < n; i++) {
			if(isPrimers[i] == true){
				num++;
			}
		}
		return num;
	}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值