实践正面,深度深即多隐层,每层神经元节点个数不多,这样搭建的神经网络效果更好,为什么呢?
我们来看一些例子。
首先,深度网络究竟在计算什么。
如果你在建一个人脸识别系统,深度神经网络做的事情就是,当你输入一张脸的照片,然后第一层可以看作一个特征探测器,或者边缘探测器。例如,我们建立了每层大概20多个hidden unit的神经网络。如下图,每个小方块就是一个隐藏单元,它会去找这张图片中边缘的信息。
然后,把这些探测到的边缘组合成面部的不同部分,例如有些找眼睛,有些鼻子。最后再把这些部分放一起,组成一张人脸。
总结起来,神经网络做的事情,就是刚开始探测简单的低层次的特征,再扩展到更大更复杂的特征。也就是从简单到复杂。
再看一个例子。建立一个语音识别系统,需要解决的问题是如何可视化语音。例如输入一个音频片段,神经网络第一层会开始试着探测比较低层次的音频波形的特征,例如音调变高了还是变低了,分辨白噪音之类。之后把这些波形组合再一起,去探测声音的基本单元,语言学中的概念叫做音位。之后再把这些信息组合起来组成单词,再把单词组合起来形成词组,最后到完整的句子。