【深度学习】论网络深度的利弊

  1. 网络容量更大 -> 模型表达(抽象)能力更强

不好收敛:

  1. 梯度问题 (弥散 / 爆炸) -> 收敛慢。

总结

  • 深度神经网络就像一个数学公式。公式越复杂,最高项次数越高,能表达的模型就越复杂,覆盖的值域也就越广。
  • But,也越容易陷入过拟合,使得模型性能不增反降。
  • So,这是一个trade-off。

[1] 深层学习为何要“Deep”(上)
[2] 深层学习为何要“Deep”(下)

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
深度学习中,图像配准可以使用神经网络来实现。一种常见的方法是使用卷积神经网络(CNN)进行图像配准。 以下是使用深度学习进行图像配准的示例代码: ```python import tensorflow as tf from tensorflow.keras.layers import Conv2D, Dense, Flatten from tensorflow.keras.models import Sequential # 创建一个卷积神经网络模型 model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(image_height, image_width, image_channels))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(2)) # 输出平移向量 # 编译模型 model.compile(optimizer='adam', loss='mse') # 准备训练数据 x_train = [...] # 输入图像数据 y_train = [...] # 输出平移向量数据 # 进行训练 model.fit(x_train, y_train, batch_size=32, epochs=10) # 使用训练好的模型进行图像配准 registered_images = [] for image in images: # 将图像输入模型,得到平移向量 translation = model.predict(image) # 应用平移向量将图像配准 registered_image = apply_translation(image, translation) registered_images.append(registered_image) ``` 在上述示例中,我们首先创建一个卷积神经网络模型,该模型接受图像作为输入,并输出平移向量。然后,我们使用训练数据对模型进行训练,使其学习图像和平移向量之间的关系。最后,我们使用训练好的模型对输入图像进行配准。 需要注意的是,上述示例代码中的具体实现细节可能会根据你的实际需求而有所不同。你可能需要根据你的数据集和任务来调整模型的结构、训练方法和配准过程。 深度学习方法在图像配准中具有一定的优势,尤其是在处理复杂的图像变换和大规模数据集时。然而,深度学习方法通常需要更多的计算资源和更多的训练数据,因此在实际应用中需要权衡利弊

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值