第7章 线性变换

1. 基下的矩阵 

 

2. 值域和核:

 

3.根子空间直和分解 

书上给出的证明需要进一步说明: 

 

 

 

例题:

1. V上全体线性变换所处的线性空间,维度是n的2次方。线性变换维度对应于基下的矩阵的维度。矩阵的维度是n的平方。 

2. 矩阵是下三角,且对角线的元素各不相同,则可以对角化,因为对角线都是特征值。

3. 注意坐标变换和基下的矩阵区别

如果把x1,x2,x3当做向量,求T(x1), T(x2),T(x3)就错了,这里的x值是坐标不是基

4.

 

5.  求线性变换的特征向量,注意是基乘以坐标的基础解系,并且特征值可能是复数(实对称矩阵特征值都是实数不会有复数)

可对角化: 最小多项式是一次因式,若当型没有若当块,有n个线性无关的特征向量,代数重数等于几个重数。 

6.复数系矩阵相似于上三角

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

heine162

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值