1. 基下的矩阵
2. 值域和核:
3.根子空间直和分解
书上给出的证明需要进一步说明:
例题:
1. V上全体线性变换所处的线性空间,维度是n的2次方。线性变换维度对应于基下的矩阵的维度。矩阵的维度是n的平方。
2. 矩阵是下三角,且对角线的元素各不相同,则可以对角化,因为对角线都是特征值。
3. 注意坐标变换和基下的矩阵区别
如果把x1,x2,x3当做向量,求T(x1), T(x2),T(x3)就错了,这里的x值是坐标不是基
4.
5. 求线性变换的特征向量,注意是基乘以坐标的基础解系,并且特征值可能是复数(实对称矩阵特征值都是实数不会有复数)
可对角化: 最小多项式是一次因式,若当型没有若当块,有n个线性无关的特征向量,代数重数等于几个重数。
6.复数系矩阵相似于上三角