钱吉林高代+高代白皮书(1)

文章探讨了矩阵的对角化、相似性、特征值和特征向量的概念,包括对角阵、正定矩阵、实对称矩阵的特性,以及直和、核空间、秩、奇异值分解等相关概念的应用。讨论了正交变换和正定性的证明方法,以及矩阵的幂等性条件。
摘要由CSDN通过智能技术生成

矩阵A和对角阵B可交换,则A为准对角阵 ,如果对角阵上的值没有相等的,则A为对角阵。

用的最多的就是相似,等价,合同,正定,对称阵,可逆阵。

实方阵相似于上三角,指的是复数系矩阵,即考虑特征值为复数的情况。

选择一组基,则所有的坐标组(子空间)到所有的向量组(子空间)之间同构(V到AV的线性变换)。它们保持向量的线性,即从坐标组中取r个向量,再取与之对于的向量组,坐标组无关等价于向量组无关。特别的,如果选择坐标组的向量构成子空间,则与之对应的向量组也构成子空间(满足封闭)。

直和:

对于线性空间V,子空间V_{1},V_{2},

(1)V_{1}+V_{2}中的任意向量 \alpha = \alpha _{1} + \alpha _{2}, \alpha _{1}\in V_{1},\alpha _{2}\in V_{2},若\alpha的表示唯一,则V_{1},V_{2}是直和。

(2)零向量表示唯一。

(3)V_{1}\cap V_{2} = \begin{Bmatrix} 0 \end{Bmatrix}

(4)dimV_{1} + dimV_{2} = dim(V_{1} + V_{2})

维数公式:dimV_{1} + dimV_{2} = dim(V_{1} + V_{2}) - dim(V_{1} \cap V_{2})

V=V_{1}\oplus V_{2} \oplus V_{3} ...\oplus V_{n}的充要条件是\sum_{j\neq i}^{}V_{j} \bigcap V_{i} = \begin{Bmatrix} 0 \end{Bmatrix}

1.求线性变换的核空间:

dimAV + dimA^{-1}(0) = n,且值域中的基向量的原向量和核空间是线性空间V的一组基。

特别的,A^{2} = A那么AV \oplus A^{-1}(0) = V

2.A^{2} = A那么AV \oplus A^{-1}(0) = V

3. voss分解

 

325题是奇异值分解

4. 证明直和

5. tr(A)=a_{11}+...a_{nn}=\lambda _{1}+...+\lambda _{n}, |A| = \lambda _{1}\lambda _{2}...\lambda _{n}

特征值大于1,|A|大于1

6.满秩分解(乘以一个可逆矩阵,不改变秩)

证明A和B的秩相等,可以通过证明 PA的秩等于B的秩,其中P非奇异阵即可逆。

7. 像和核

下面这道题多次出现,思路都一样的,基本上都是f(x)和g(x)互素,或者告诉你AB+CD=E。然后证明V等于V1和V2的直和相加,证明思路就是先证明V=V1+V2,在证明V1和V2的交只有0元素。

  

 

8. AB=BA,则AB是实对称,存在正交阵P,使其对角化。A乘以A的转置半正定,A可逆,则正定。

9.

(1)任意矩阵相似于上三角,利用特征值和数学归纳法证明

(2)上(下)三角矩阵如果可逆,逆矩阵也是上(下)三角。可以通过初等变换验证或者用伴随矩阵的定义验证。注意伴随矩阵的第i,j行是aji的代数余子式Aji。

下面这道题包含了两个重要结论:

同时上三角,见第十二题:AB至少有一个公共特征向量,所以存在矩阵,能同时相似于第一列除了a11不为0,a12,a13,...a1n都为0的矩阵,然后考虑使用数学归纳法,从a22到ann的矩阵A1和从b22到bnn的矩阵B1是可交换的,可同时对角化,最后得到AB可同时对角化。

10. ImV ,KerV 是V的子集,所以ImV + KerV也是V的子集(都可以用V表示),且dim(ImV) + dim(KerV)  = dimV(书上的定理,并且ImV的原)。但是根据维度公式:dim(ImV + KerV) 往往比dim(ImV) + dim(KerV) 要小(比如多项式的求导),当他们相等时,也即dim(ImV + KerV) = dimV时,ImV 和KerV的交只有零元素。下面证明此时V = ImV \oplus KerV(大白话就是V中的向量能够被ImV+KerV选取的基表示,这样可以互相表示就是等价的,也即线性空间相等)。

ImV + KerV中的向量记为向量组A,V中向量记为向量组B。可以考虑向量组B可由向量组A表示,且R(A) =R(B)=r,则A,B合在一起时,都可以用向量组A表示,所以L(A,B)的秩为R,所以选取B中的极大组也能表示L(A,B)(向量组任意r个线性无关的向量都是极大组)。所以B可以表示A,所以A和B是完全等价的,L(A) = L(B),即dim(ImV + KerV) = dimV时,V = ImV \oplus KerV。

(书本课后习题)

要想证明V = ImV \oplus KerV,还可以通过证明V中任意向量属于ImV+ KerV,这样 V = ImV + KerV,所以dim(ImV) + dim(KerV)  = dimV = dim(ImV + KerV) ,则根据维数公式有ImV 和KerV的交只有零元素。

 ImV和KerV的维度等于V这是定理,如果ImV和KerV只有0元素相交,他们就是直和,相加等于V

 利用Ker进行巧证,下面这题也是 

大致思路是:

(1)先得到 ImT = ImT的平方。

(2)然后b属于ImT和KerT的交时,b的原像a属于T,T的二次方a = 0,a属于KerT,b = Ta = 0

11. 幂等分解:矩阵分解成一个可逆矩阵和幂等矩阵

 

12. AB=BA ,至少一个公共特征向量

由于在一组基下的坐标唯一,所以特征向量的坐标也相同,因此A和B在一组基下的矩阵也有公共特征向量 。

取A的一个特征子空间,则它是B的不变子空间,则B可以看成是特征子空间的一个线性变换,复数域上总是有特征根的,且能求出来特征向量,该特征向量可以算B的,也属于A的特征子空间,即也是A的特征向量。因此,当A有r个不同特征值,就取r个特征子空间,每个空间都有至少一个公共特征向量,属于A和B,由于他们属于不同的特征值的,所以线性无关。

利用上面的结论证明下面的第7题

13. A正定,则有A=S^{2},S为实对称正定矩阵。

A正定,则存在正交阵使其对角化

A=P^{T}\begin{pmatrix} a1 & & & \\ & a2 & & \\ & & ... & \\ & & & an \end{pmatrix} P=P^{T} \begin{pmatrix} \sqrt{a1} & & & \\ & \sqrt{a2} & & \\ & & ... & \\ & & & \sqrt{an} \end{pmatrix} PP^{T} \begin{pmatrix} \sqrt{a1} & & & \\ & \sqrt{a2} & & \\ & & ... & \\ & & & \sqrt{an} \end{pmatrix} P=S^{2}

显然S和E合同,所以是正定的。

14. 

15.

16. 线性变换的可交换 

AB=BA,则他们对一组基的作用是等价的,即在一组基下的矩阵分别问A,B则基下矩阵可交换

17. 酉相似对角矩阵充要条件矩阵是正规矩阵(矩阵和它的转置共轭可交换)

第3节酉相似对角化 - 百度文库

18. 几何重数(特征值对应的特征向量的维度)小于等于代数重数

假设一个特征值的代数重数是k,然后求几何重数等价于求\lambda _{0}E - A的秩,如果秩为n-k,则基础解系为n-(n-k)=k,这样代数重数=几何重数。事实上\lambda _{0}E - A的秩大于n-k,几何重数是小于k的,下面给出证明:

相似不改变矩阵的秩,而矩阵总是相似于若当型,因此考虑若当型的秩,由于特征值是k重,所以对角线上有k个特征值\lambda _{0}

\begin{pmatrix} \lambda _{0} - \lambda _{0} & & & & & \\ * & \lambda _{0} - \lambda _{0} & & & & \\ & * & \lambda _{0} - \lambda _{0} & & & \\ & & & \lambda _{0} - \lambda _{1} & & \\ & & & * & ... & \\ & & & & & \lambda _{0} - \lambda _{2} \end{pmatrix},观察若当型矩阵的秩,很容易知道大于等于n-k(对角线后面的n-k个数都不为0,如果有个若当块,那么矩阵的秩就大于n-k)。

由于(\lambda _{0}E - A)^{k}=\begin{pmatrix} 0 & & & & & \\ & 0 & & & & \\ & & 0 & & & \\ & & & \lambda _{0} - \lambda _{1} & & \\ & & & * & ... & \\ & & & & & \lambda _{0} - \lambda _{2} \end{pmatrix},所以(\lambda _{0}E - A)^{k}的秩一定是n-k,可以得到可对角化的充要条件是n-k = dim Ker(\lambda _{0}E - A)^{k}= dimKer(\lambda _{0}E - A),

此时自由变量有n-(n-k)个。x1,x2,...xk都是他们的自由变量。

实对称矩阵的几何重数(特征值对应的特征向量的维度)等于代数重数,因为实对称满足R(A^{2})=R(AA^{'})=R(A)\Rightarrow R(A^{n})=R(A)

显然\lambda _{0}E - A是对称的,所以R(\lambda _{0}E - A)^{k}=R(\lambda _{0}E - A)= n-k

因此\lambda _{0}E - A的基础解系维度是k,就等于代数重数,因此可对角化。

19. 汉密尔顿定理的使用

20. 正交变换

证明是正交变换,可以通过选择一组标准正交基,在基下矩阵是正交矩阵。

 

21.  实矩阵相似于上三角

正交相似于上三角的充要条件是实矩阵特征值都是实数。 

正交矩阵是实矩阵,A也是实矩阵,所以正交相似得到的三角矩阵也是实矩阵,而三角矩阵对角线上的值是特征值,所以A的特征值也是实数。 

22. 任一二次型矩阵A,存在c使A+cE正定

23. 幂等矩阵充要条件是A和E-A的秩的和等于n

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

heine162

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值