深度学习与传统机器学习的关系

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_27668473/article/details/52892246

应该学习传统机器学习的四大理由:

第一,研究机器学习的人都知道,不同的算法对不同的问题而言,所表现出来的性能是不一样的,这也就说明,深度学习并不能对所有领域的问题都取得好的效果,这时就可以考虑传统的机器学习算法来解决。

第二,如果不学习传统的机器学习算法,光有深度学习,就算完成了好的特征的提取和学习,那也不能完成最后的任务,换言之,深度学习最后的决策层大多数时候还是得要依赖传统的机器学习来实现。

第三,深度学习模型比较复杂,对于非专业人员来说,学习门槛会要求更高,这时就可以考虑先学习传统的机器学习,有了一定的基础之后再来学习深度学习的算法。

第四,深度学习模型训练复杂度高,耗时,对硬件的要求相对较高,因此对于相对较小规模的问题,可以考虑直接用传统机器学习算法完成即可。

展开阅读全文

没有更多推荐了,返回首页