Transformer理论知识讲解

 传统RNN网络存在的问题

相对于Transformer,传统的循环神经网络(RNN)网络在计算上存在一些问题和限制,这些问题主要包括以下几点:

  1. 长期依赖问题:传统的RNN网络难以捕捉长序列之间的依赖关系,因为它们对于较长的时间步骤容易出现梯度消失或梯度爆炸的问题。这导致了模型在处理长文本或序列数据时性能下降。

  2. 并行性有限:RNN中的每个时间步骤都依赖于前一个时间步骤的输出,这限制了模型的并行计算能力。这意味着在训练和推理时,很难有效地利用现代硬件(如GPU)的并行性能,从而导致训练速度较慢。

  3. 难以捕获全局依赖关系:RNN只能捕捉到相对局部的依赖关系,而难以捕获全局的依赖关系。这意味着它们在处理某些任务,特别是需要理解长距离依赖关系的任务(如翻译或文本生成),表现不佳。

  4. 参数量大:为了增加RNN的记忆能力,需要增加网络的参数量,这会导致模型变得更大、更难训练,同时容易过拟合。

相比之下,Transformer 模型通过引入自注意力机制(Self-Attention)来解决了上述问题。Transformer 不受时间步骤顺序的限制,可以并行处理整个输入序列,因此在处理长序列时表现更好。自注意力机制允许模型在每个时间步骤都考虑到所有其他时间步骤的信息,从而更好地捕获全局依赖关系。此外,Transformer 通过堆叠多个注意力层和前馈神经网络层来增加模型的深度,而无需增加大量参数,从而提高了性能。

传统的Word2Vec存在的问题

传统的Word2Vec表示向量存在一些问题,虽然它在自然语言处理中取得了很大成功,但仍然有一些局限性:

  1. 词汇表固定:Word2Vec模型需要一个固定的词汇表,因此它只能处理那些出现在训练数据中的词汇。对于生僻词汇、专业术语或新兴词汇,Word2Vec模型可能无法提供有效的词向量表示。

  2. 词义歧义:Word2Vec模型将每个词表示为一个固定的向量,忽略了词汇的多义性。例如,"bank"可以指银行或河岸,但在传统的Word2Vec表示中,它只有一个向量表示,无法区分不同的含义。

  3. 上下文忽略:Word2Vec模型在生成词向量时通常只考虑了上下文窗口内的局部信息,而没有考虑更广泛的语境。这可能导致在某些情况下,词向量无法捕捉到词汇的真实含义或语境信息。

  4. 训练数据依赖性:Word2Vec模型对于训练数据的依赖性较强。如果训练数据不足或不具代表性,生成的词向量可能会失真或不准确。

  5. 高维度:Word2Vec生成的词向量通常具有较高的维度,这可能会增加计算和存储成本,尤其是对于大型词汇表和大规模文本数据。

虽然传统的Word2Vec存在这些问题,但它仍然是一个有用的工具,特别是在许多自然语言处理任务中,如文本分类、情感分析和信息检索中。然而,随着深度学习的发展,出现了更高级的词向量表示方法,如预训练的词向量(例如BERT、GPT等),它们可以更好地解决上述问题,并在各种自然语言处理任务中取得了显著的性能提升。这些模型能够学习更丰富、更具上下文的词向量表示,同时不受固定词汇表的限制。

BERT和GPT

当谈到自然语言处理中的预训练模型时,BERT(Bidirectional Encoder Representations from Transformers)和GPT(Generative Pre-trained Transformer)是两个最具代表性的模型。它们都是基于Transformer架构构建的,并在自然语言处理领域中取得了巨大的成功。以下是对它们的简要介绍:

  1. BERT(Bidirectional Encoder Representations from Transformers):

    • BERT是由Google AI于2018年提出的预训练模型。它的主要贡献在于通过双向(即从左到右和从右到左)的语言模型预训练任务来学习深度上下文感知的词向量表示。这种双向预训练使BERT能够更好地理解单词在上下文中的含义和关系。

    • BERT的预训练任务包括“遮蔽语言模型”(Masked Language Model,MLM)和“下一句预测”(Next Sentence Prediction,NSP)。在MLM中,一些词被随机遮蔽,模型需要预测这些词;在NSP中,模型需要判断两个句子是否是连续的。这些任务使BERT能够学习深层次的语言表示。

    • 预训练完成后,BERT的模型可以用于各种自然语言处理任务,如文本分类、命名实体识别、情感分析等。通过微调预训练模型,可以在这些任务中取得显著的性能提升,而无需从头开始训练模型。

  2. GPT(Generative Pre-trained Transformer):

    • GPT是由OpenAI于2018年推出的一系列模型,最初是GPT-1,然后是GPT-2和GPT-3。这些模型以其大规模的参数量和能够生成高质量文本的能力而闻名。

    • GPT模型使用单向的语言模型预训练任务,这意味着在预测下一个词时,只考虑了左侧的上下文。尽管如此,GPT模型仍然能够生成流畅、具有语法和语义正确性的文本。

    • GPT模型通常用于生成文本,如文章摘要、对话生成、自动翻译等任务。它们也可以通过微调来适应各种其他任务,但BERT在某些任务上可能更具竞争力,因为BERT使用了双向的预训练。

需要注意的是,BERT和GPT是两种不同的预训练方法,每种方法在不同的应用场景和任务中都有其优势。BERT适用于需要深层次的语义理解的任务,而GPT适用于生成文本和自然语言理解的任务。此外,随着时间的推移,这些模型的改进版本不断出现,如GPT-3和BERT的变种,它们在性能和规模方面取得了更大的突破。因此,选择模型应根据特定任务的要求和可用资源来决定。

Transformer 整体架构

Transformer 是一种重要的神经网络架构,已经在自然语言处理和其他序列处理任务中取得了巨大的成功。以下是关于Transformer的五个方面的问题的简要介绍:

  1. 整体架构:

    Transformer 架构由 Vaswani 等人于2017年首次提出,它引入了自注意力机制(Self-Attention)来处理序列数据。整体上,Transformer包含了编码器和解码器两部分,通常用于序列到序列(Sequence-to-Sequence,Seq2Seq)任务。

    • 编码器(Encoder):编码器负责将输入序列编码为上下文感知的表示。它由多层堆叠的自注意力层和前馈神经网络层组成,每一层都具有相同的结构。输入序列的每个词都经过自注意力层,以捕捉不同位置的相关性和依赖关系。

    • 解码器(Decoder):解码器负责将编码器生成的表示转化为目标序列。它也由多层堆叠的自注意力层和前馈神经网络层组成,但它还包括一个额外的遮蔽自注意力层,以确保在生成序列时不会泄露未来信息。

  2. 输入如何编码:

    Transformer 使用嵌入层(Embedding Layer)将输入序列中的词汇转化为密集的词向量表示。这些词向量包括位置编码(Positional Encoding),以捕捉输入序列中的单词在位置上的信息。位置编码通常是一个正弦和余弦函数的组合,用于将位置信息嵌入到词向量中。

  3. 输出结果是什么:

    Transformer 的输出结果通常是对目标序列的预测或生成。在Seq2Seq任务中,解码器生成目标序列的词汇概率分布,然后通过贪婪或束搜索等方法选择最可能的下一个词汇。在其他任务中,输出结果可能是对输入序列的分类标签或其他结构化信息。

  4. Attention 的目的:

    自注意力机制(Self-Attention)是Transformer架构的核心组成部分之一,其主要目的是在编码和解码过程中捕捉不同位置之间的依赖关系。Attention允许模型为每个输入位置分配不同的权重,以便根据上下文来加权聚合信息。这有助于模型更好地理解句子内部和句子之间的语义关系,使其能够处理长距离依赖关系和全局信息。

  5. 怎样组合在一起:

    Transformer 将编码器和解码器组合在一起以执行不同的任务。在训练期间,编码器和解码器都会接收输入序列,而在生成期间,编码器将编码输入序列,然后将编码的信息传递给解码器。解码器使用自注意力来生成目标序列,并根据先前生成的标记生成下一个标记。这个过程是迭代的,直到生成整个目标序列或达到一个停止条件。

总之,Transformer 是一种强大的神经网络架构,通过自注意力机制实现了在自然语言处理和其他序列处理任务中的卓越性能,它的设计使其能够并行化处理输入序列,同时捕捉全局依赖关系。

Attention(注意力)机制

"Attention"(注意力)在深度学习和神经网络中是一个重要的概念,它模拟了人类视觉和感知系统中的一种行为:在处理信息时,我们会有选择地关注一些重要或相关的部分,而忽略其他部分。

在神经网络中,"Attention"有两个主要方面:

  1. 对于输入的数据,你的关注点是什么?

    这一方面关注了神经网络在处理输入数据时选择性地关注哪些部分。在自然语言处理中,例如,在翻译任务中,当模型生成目标语言的词汇时,它可能更关注源语言句子中与当前翻译位置相关的词汇,而不是整个句子的所有信息。这种选择性的关注可以帮助模型更好地理解输入数据并提高任务性能。

  2. 如何才能让计算机关注到这些有价值的信息?

    这一方面关注了如何设计神经网络以使其能够自动学习如何关注有价值的信息。在深度学习中,"Attention"机制是一种机制,通过它神经网络可以根据输入数据的内容和上下文动态地分配不同部分的权重,以便更有效地处理信息。"Attention"机制通常通过学习权重矩阵或分布来实现,这些权重决定了不同输入部分对于特定任务的重要性。

在自注意力(Self-Attention)机制中,模型可以学习在处理输入序列时如何为每个位置分配不同的关注权重,以便更好地捕捉依赖关系和上下文信息。这对于序列到序列任务、文本生成、机器翻译等自然语言处理任务非常有用。

总之,"Attention"在深度学习中用于模拟模型选择性地关注信息的能力,并且通常通过学习权重来实现,以确保模型可以自动关注有价值的信息。这一机制已经在各种任务中取得了显著的成功,提高了神经网络在处理复杂数据和任务中的性能。

Self-attention(自注意力)机制

Self-attention(自注意力)是一种神经网络中用于序列数据的注意力机制,用于处理序列数据(如自然语言文本或时间序列数据)时,动态地分配不同位置的权重,以捕捉不同位置之间的依赖关系和上下文信息。Self-attention不仅可以用于自然语言处理任务,还可以应用于图像处理和其他领域。

在自注意力机制中,每个位置的输出是根据输入序列中所有位置的信息进行加权平均计算的,而权重是通过学习得到的。这意味着每个位置都可以考虑到序列中的其他位置,并且根据其在当前上下文中的重要性对它们进行加权。

在自注意力中,给定一个输入序列,例如一个句子,每个元素(例如单词)都可以与序列中的其他元素发生交互。每个元素都计算与其他元素的关联程度,然后根据这些关联程度来加权组合其他元素的信息,从而生成自身的表示。这种机制允许模型在不同上下文中为每个元素分配不同的权重,从而更好地捕捉到元素之间的依赖关系和语义信息。

对于你提供的例子:

  1. "The animal didn't cross the street because it was too tired."

    在这个句子中,"it" 指的是 "the animal",因为在语境中,"it" 显然指的是动物。在自注意力机制中,通过计算每个词对于 "it" 的注意力权重,模型能够将注意力集中在 "the animal" 这个短语上。

  2. "The animal didn't cross the street because it was too narrow."

    在这个句子中,"it" 指的是 "the street",因为在语境中,"it" 显然指的是街道。通过自注意力机制,模型可以根据上下文信息动态地将注意力权重分配给 "the street"。

自注意力允许模型在不同的语境和不同的上下文中为每个词分配不同的注意力权重,因此能够更准确地捕捉指代关系和语义信息,这有助于提高自然语言处理任务的性能,如机器翻译、文本生成和问答系统。这也是Transformer架构中的关键组成部分,用于编码输入序列和生成输出序列。

“在不同的语境、在不同的上下文信息当中,每个词在重构的时候,重构出来的结果是不变的。”

自注意力(Self-Attention)的计算过程

自注意力(Self-Attention)的计算过程涉及到三个关键矩阵:Queries(查询)、Keys(键)、和Values(值),这些矩阵用于建立词与其他词的关系和特征表达。以下是自注意力计算的基本步骤:

1. 准备 Queries、Keys 和 Values 矩阵:

1. 准备 Queries、Keys 和 Values 矩阵:

  • Queries(查询)矩阵:对输入序列中的每个词都有一个查询向量。查询矩阵通常是通过对原始输入向量进行线性变换(通常是一个权重矩阵乘法)来获得的。

  • Keys(键)矩阵:与查询矩阵类似,为每个输入词生成一个键向量。键矩阵也是通过线性变换获得的。

  • Values(值)矩阵:与查询和键对应,为每个输入词生成一个值向量。值矩阵同样也是通过线性变换获得的。

这三个矩阵的维度通常相同,因为它们都要与输入序列中的每个词进行操作。

2. 计算注意力分数(Attention Scores):

2. 计算注意力分数(Attention Scores):

对于每个查询向量,计算它与所有键向量之间的相似度(通常使用点积或其他函数来计算)。这将产生一组注意力分数,表示了查询与每个键的关联程度。可以通过将查询矩阵与键矩阵的转置相乘来一次性计算所有注意力分数。

3. 计算注意力权重:

3. 计算注意力权重:

将注意力分数进行缩放(通常使用标准化的Softmax函数),以确保它们的总和等于1。这将产生一组注意力权重,表示了每个查询与其他位置的词的关联强度。

当计算自注意力(Self-Attention)中的注意力权重时,使用了以下步骤,其中包括了缩放因子 \sqrt{d_k},它的目的是为了消除矩阵维度的影响:

  1. 计算注意力权重:

    • 首先,计算查询矩阵(Queries)和键矩阵(Keys)的点积(内积),这将产生一组注意力分数(Attention Scores)。具体而言,对于每个查询向量 q_i 和键向量 k_j,计算点积 q_i \cdot k_j

    • 接下来,将点积结果除以缩放因子 \sqrt{d_k},其中 \sqrt{d_k}​ 表示查询和键的向量维度(通常是相等的)。这个缩放因子有助于确保注意力分数的尺度合适,不受维度大小的影响。

    • 然后,将上一步得到的结果应用于 Softmax 函数,将注意力分数转换为注意力权重。Softmax 函数将确保注意力权重总和为1,以便有效地进行加权平均。

    • 最终,每个查询向量 q_i​ 将根据对应的注意力权重与值向量(Values)进行加权平均,以获得自注意力输出。

这个缩放和Softmax的过程有助于确保每个查询向量对应的注意力权重合理地考虑了与其相关的键向量,而不受向量维度大小的干扰。这是自注意力机制中的重要步骤,有助于模型更好地捕捉序列中的依赖关系和上下文信息。

自注意力(Self-Attention)的整体计算流程

自注意力(Self-Attention)的整体计算流程如下:

  1. 准备 Queries、Keys 和 Values 矩阵:

    • Queries(查询)矩阵:为输入序列中的每个词生成一个查询向量 Q_i。这可以通过对原始输入向量进行线性变换来实现。

    • Keys(键)矩阵:为输入序列中的每个词生成一个键向量 K_i。也通过线性变换获得。

    • Values(值)矩阵:为输入序列中的每个词生成一个值向量 V_i。同样,通过线性变换获得。

    这三个矩阵的维度通常相同,因为它们都要与输入序列中的每个词进行操作。

  2. 计算注意力分数(Attention Scores):

    对于每个查询向量 Q_i​,计算它与所有键向量 K_i 之间的相似度得分。这可以通过计算点积 Q_i \cdot K_j来完成,其中 i 表示查询的位置,j 表示键的位置。

  3. 缩放注意力分数:

    为了确保注意力分数具有适当的尺度,将每个注意力分数除以缩放因子 \sqrt{d_k}​​,其中 d_k​ 表示查询和键向量的维度大小。这一步骤有助于平衡不同维度大小对注意力的影响。

  4. 应用 Softmax 函数:

    将缩放后的注意力分数输入 Softmax 函数中,以将它们转化为注意力权重。Softmax 函数将确保所有注意力权重的总和等于1。

  5. 计算加权和(Weighted Sum):

    使用注意力权重对每个值向量 V_i​ 进行加权平均,以获得自注意力输出。具体而言,对于每个查询向量 Q_i​,将注意力权重与对应的值向量 V_j 相乘并求和,得到自注意力输出向量 O_i

  6. 重复步骤 2 到步骤 5:

    重复上述步骤,对输入序列中的每个词都计算自注意力输出。这意味着每个词都会考虑整个输入序列,以根据上下文动态地分配不同词的重要性。

  7. 输出结果:

    最终的自注意力输出结果包含了输入序列中每个词的加权表示,其中每个词都根据整个输入序列的上下文信息进行了更新。

总之,自注意力机制的计算流程允许模型动态地考虑整个输入序列的信息,以便更好地捕捉依赖关系和上下文信息。这是自然语言处理任务中非常有用的机制,特别适用于处理长序列和处理不同位置之间的关联。

多头自注意力(Multi-Head Attention)机制

多头自注意力(Multi-Head Attention)机制是自注意力机制的一种扩展,旨在允许模型同时关注输入序列的不同部分,以捕捉多种特征表示。这种机制类似于卷积神经网络(CNN)中的多个卷积核,每个卷积核可以检测输入的不同特征。

多头自注意力机制步骤:

以下是多头自注意力机制的主要思想和步骤:

  1. 多头机制:

    • 在多头自注意力中,通过创建多个独立的注意力头(通常是几个头,如8头或16头),每个头都学习不同的注意力权重。这些头允许模型同时关注输入序列的不同部分。

    • 对于每个头,都有独立的 Queries(查询)、Keys(键)、和 Values(值)矩阵,通过线性变换从原始输入向量中生成。每个头都进行自注意力计算,产生一组注意力权重和对应的加权和输出。

  2. 头之间的拼接:

    • 在每个头完成自注意力计算后,将每个头的输出拼接在一起,以获得多头自注意力的最终输出。这将产生一个更丰富的表示,包括了来自不同头的信息。
  3. 降维:

    • 可以选择将多头自注意力的输出通过全连接层进行降维,以减少维度。这可以帮助模型更好地处理复杂的信息,减少计算负担,并有助于保持模型的计算效率。

多头自注意力(Multi-Head Attention)机制的结果

多头自注意力(Multi-Head Attention)机制的结果可以理解为模型在不同的注意力头中学习到了不同的关注重点和特征表示,因此产生了不同的特征向量表达。这些不同的注意力头可以看作是模型在处理输入序列时同时关注多个不同方面或特征的方式。

具体来说,多头自注意力的结果如下:

  1. 不同的注意力结果:每个注意力头都计算了一组注意力权重,用于确定在输入序列中每个词与其他词的关联程度。由于每个头的参数是独立训练的,它们可以学习不同的关注模式和依赖关系。因此,不同头的注意力权重会导致不同的注意力结果。

  2. 不同的特征向量表达:注意力权重将不同的值向量进行加权,从而产生每个头的特征向量表达。这些特征向量可以看作是模型对输入序列的不同方面或不同层次的表示。每个头可能会关注输入序列中的不同语义特征、依赖关系或上下文信息,因此产生的特征向量表达也不相同。

综合来看,多头自注意力机制通过允许模型同时学习多个不同的关注重点,使得模型能够更好地捕捉输入序列中的多样化信息。这些不同的注意力头和特征表示可以协同工作,提供更丰富和有表达力的序列表示,从而在各种自然语言处理任务中取得更好的性能。

堆叠多层(Stacked Layers)

在深度学习中,通常使用堆叠多层(Stacked Layers)的方式来构建更复杂的神经网络,这也适用于多头自注意力机制。通过堆叠多层,模型可以学习更丰富和抽象的特征表示,从而提高性能。以下是关于堆叠多层的介绍:

  1. 堆叠多层的基本思想:

    • 堆叠多层是将多个相同或类似的网络层按顺序连接在一起的方法。在自注意力中,每一层都可以是一个自注意力层,它包括多个注意力头,每个头学习不同的特征表示。

    • 通过堆叠多层,模型可以逐渐抽象和组合输入数据的不同层次特征。底层的层可以捕捉原始数据的局部特征,而更高层的层可以组合这些局部特征以生成更高级别的语义表示。

  2. 计算方法都是相同的:

    • 在堆叠多层中,每一层的计算方法都是相同的,包括自注意力计算的各个步骤:生成 Queries、Keys 和 Values 矩阵,计算注意力分数,缩放分数,应用 Softmax 函数,计算加权和,以及最终的输出。

    • 每一层都接收上一层的输出作为输入,因此信息会逐层传递并被不断地改进和抽象。每一层都会对输入序列的不同层面进行特征提取和表示。

  3. 堆叠的深度:

    • 堆叠多层的深度是一个超参数,可以根据任务和模型复杂度的要求来选择。更深的模型通常可以学习更复杂的特征表示,但也需要更多的计算资源和数据来训练。

    • 深度越深,模型能够捕捉的语义层次就越高,但同时也可能导致过拟合的风险,因此需要进行适当的正则化和训练控制。

通过堆叠多层自注意力,模型可以逐渐提高对输入序列的理解和表示能力,这对于自然语言处理等任务非常有用。不同层次的特征表示可以在各种任务中发挥作用,例如文本分类、机器翻译、文本生成等。因此,堆叠多层自注意力是现代神经网络中的重要组成部分,为模型提供了更强大的表示能力。

位置编码(Positional Encoding)

自注意力机制在处理输入序列时,每个词都会考虑整个序列的加权,因此在传统的自注意力中,并没有对词的位置信息进行明确的编码。这可能导致模型无法捕捉到词在序列中的具体位置,这在某些任务中是不可忽视的,因为位置信息在自然语言处理中通常是有意义的。

为了解决这个问题,Transformer 模型引入了位置编码(Positional Encoding),以将位置信息引入到输入序列的表示中。位置编码的主要目的是让模型能够区分不同位置的词,并在表示中反映它们的相对位置。

位置编码通常是通过以下方式实现的:

  1. 对每个位置的词向量添加一个位置编码向量。这个位置编码向量的维度与词向量相同。

  2. 位置编码向量通常由正弦和余弦函数的组合计算得到,这是为了确保编码是周期性的,以便模型能够处理不同序列长度的输入。

  3. 位置编码向量与词向量相加,以获得包含位置信息的最终输入表示。

位置编码使得模型能够区分不同位置的词,从而更好地捕捉输入序列中的顺序信息。这对于诸如机器翻译、问答系统和文本生成等需要考虑语境和序列顺序的任务非常重要。

总之,位置编码是Transformer模型中的一个关键组成部分,它帮助模型处理输入序列中的位置信息,以更好地捕捉语言的结构和含义。位置编码的引入提高了Transformer模型对序列数据的建模能力,使其在自然语言处理任务中表现出色。

Add & Normalize添加和归一化

在Transformer模型的多层堆叠中,每个层之后通常都会采用"Add & Normalize"操作。这个操作包括两个主要步骤:添加(Add)和归一化(Normalize),它们有助于稳定训练过程并提高模型性能。

  1. 添加(Add):

    在这一步骤中,模型将前一层的输出与通过该层的信息(例如,自注意力或前馈神经网络的输出)相加。这类似于残差连接(Residual Connection)的思想,使得模型可以学习到每一层所引入的变换,而不是完全覆盖前一层的输出。

  2. 残差连接(Residual Connection)

    将前一层的输出与当前层的输出相加。这个连接方式的目的是使模型能够更好地学习每一层所引入的变换,而不是覆盖或替代前一层的输出。
    1. 前一层的输出 X:这是前一层的计算结果,通常是一个包含了丰富信息的表示。

    2. 当前层的输出 F(X):这是当前层的计算结果,例如通过自注意力、前馈神经网络等方式得到的。F(X) 表示了当前层所引入的变换。

    3. 残差连接:将前一层的输出 X 与当前层的输出 F(X) 相加,即 X + F(X)

      这个残差连接方式的主要优势在于它使得模型可以轻松地学习到恒等变换(identity mapping),即如果当前层的变换对输入没有任何影响,那么 F(X) 将接近于零,从而 X + F(X) 仍然保留了前一层的信息。这有助于训练更深的神经网络,因为模型可以逐渐地学习到有用的变换,而不必从头开始构建所有的特征表示。这种残差连接方式有助于提高模型的性能和训练效率。

  3. 归一化(Normalize):

    在添加操作之后,模型通常会进行归一化,以确保各层的输出具有相似的尺度和分布。这可以通过层归一化(Layer Normalization)或批归一化(Batch Normalization)等方法来实现。归一化有助于防止梯度消失或梯度爆炸问题,并提高模型的稳定性。归一化通常针对每个特征维度进行,确保模型在不同维度上的变化尺度是一致的。

总之,"Add & Normalize"操作是Transformer模型中的一个关键组成部分,用于每个层的输出。它通过残差连接和归一化来稳定训练过程,有助于模型更好地学习复杂的特征表示。这种结构在每个Transformer层中都会出现,以确保模型在处理不同层次的特征时能够保持稳定性和有效性。

编码器(Encoder)和解码器(Decoder)

在Transformer模型中,有两个关键组件:编码器(Encoder)和解码器(Decoder)。它们之间有紧密的计算关系,共同协作以实现不同的自然语言处理任务,如机器翻译、文本摘要等。

以下是编码器和解码器之间的计算关系的详细介绍:

  1. 编码器(Encoder):

    • 编码器负责将输入序列(通常是源语言文本)转化为一个包含丰富信息的表示,这个表示称为“上下文编码”(Contextual Encoding)。编码器由多个相同结构的层组成,每个层包括两个主要部分:自注意力(Self-Attention)和前馈神经网络(Feed-Forward Neural Network)。

    • 在每个编码器层中,输入序列首先通过自注意力层进行处理,以捕捉输入序列中不同位置的依赖关系和上下文信息。自注意力的计算在不同层之间是相同的,但每层的参数是独立学习的。

    • 接下来,在每个编码器层中,经过前馈神经网络的处理,以进一步抽象和组合特征。前馈神经网络在每个位置上都是相同的。

    • 最终,编码器输出一个上下文编码,它包含了输入序列的信息,但不包括与任务相关的输出信息。

  2. 解码器(Decoder):

    • 解码器负责将上下文编码转化为目标序列(通常是目标语言文本),实现了序列生成的任务。解码器也由多个相同结构的层组成,每个层包括自注意力、编码器-解码器注意力和前馈神经网络。

    • 在解码器中的每个层中,自注意力用于捕捉目标序列中不同位置的依赖关系和上下文信息,而编码器-解码器注意力用于将上下文编码与生成的部分序列进行对齐,以确保生成的下一个词考虑了输入序列的信息。

    • 解码器还包括前馈神经网络层,用于进一步抽象和组合特征。

    • 解码器的输出经过一个线性变换和Softmax函数,以获得对下一个词的概率分布。

    • 在解码器中,还引入了MASK机制,以确保在生成序列时只能看到之前已生成的部分,而不能看到后续的内容。这有助于模型逐步生成目标序列,而不会提前看到未来的信息。

总之,编码器和解码器之间的计算关系是Transformer模型中的核心。编码器负责将输入序列转化为上下文编码,解码器则使用上下文编码生成目标序列。这两者之间通过自注意力、编码器-解码器注意力和前馈神经网络等机制进行信息传递和处理,以实现各种自然语言处理任务。MASK机制确保了解码器生成序列的逐步生成过程。

最终输出结果

最终输出结果是解码器(Decoder)生成的预测序列,这个预测序列通常是对目标语言或任务的输出。在Transformer模型中,最终输出结果的计算涉及到以下几个关键步骤:

  1. 线性变换(Linear Transformation):

    在解码器的最后一个层之后,通常会添加一个线性变换层,将解码器的输出特征映射到与词汇表(Vocabulary)大小相同的维度上。这个线性变换层的目的是将特征表示映射到一个空间,使得每个维度对应于词汇表中的一个词。

  2. Softmax函数:

    在线性变换之后,通常会使用Softmax函数将每个维度的得分转化为一个概率分布。Softmax函数将确保所有的概率值都介于0和1之间,并且总和等于1。这样,模型可以为每个位置上的输出预测一个概率分布,表示每个词的可能性。

  3. 预测:

    基于Softmax函数的输出,可以得到每个位置上每个词的预测概率。通常,选择概率最高的词作为预测结果。这个过程可以在每个解码器的时间步中重复进行,以生成整个序列。

  4. 损失函数(Cross-Entropy Loss):

    最终的预测结果与真实的目标序列进行比较,计算损失。常用的损失函数是交叉熵损失(Cross-Entropy Loss),它度量了预测分布与真实分布之间的差异。通过最小化损失函数,模型可以学习到更准确的预测结果。

  5. 训练和优化:

    模型通常在训练数据上进行训练,使用反向传播算法来更新模型参数,以减小损失函数。通过不断地迭代训练,模型的预测结果将逐渐变得更加准确。

总之,最终输出结果是解码器生成的预测序列,通过线性变换、Softmax函数和损失函数的计算来实现。这个结果通常用于各种自然语言处理任务,如机器翻译、文本生成等。最终目标是使模型的预测结果尽可能地接近真实目标序列,从而实现任务的最佳性能。

Transformer 是一种革命性的神经网络架构,用于处理自然语言处理和其他序列数据的任务。以下是Transformer的主要方面内容的整体梳理:

  1. 输入(Inputs):

    输入通常是一个由词向量组成的序列,表示原始文本或序列数据。
  2. 位置编码(Positional Encoding):

    为了考虑输入序列中的位置信息,位置编码会将位置信息嵌入到词向量中,使模型能够区分不同位置的词。
  3. 编码器(Encoder):

    编码器由多个相同结构的层组成,每个层包括自注意力、前馈神经网络、添加和归一化等操作。编码器负责将输入序列转化为上下文编码。
  4. Self-Attention 机制

    Self-Attention 是Transformer的核心组成部分之一,用于在输入序列中建立词之间的依赖关系和上下文信息。Self-Attention 允许每个词都考虑整个输入序列,并为每个词分配不同的注意力权重。
  5. Multi-Head Self-Attention

    Multi-Head Self-Attention 扩展了Self-Attention,允许模型同时学习多个不同的关注模式和特征表示。多个注意力头产生不同的特征表示,从而更好地捕捉输入序列的多样性信息。
  6. 添加和归一化(Add & Norm):

    在每个编码器层的最后,使用残差连接将前一层的输出与当前层的输出相加,并进行归一化以稳定训练。
  7. 多层堆叠

    Transformer 模型包括多个相同结构的编码器和解码器层,这些层堆叠在一起,逐层提取和组合特征表示。堆叠的深度可以根据任务和模型复杂度的需求进行调整。
  8. 并行化加速训练

    Transformer 模型的结构允许高度的并行化,因此可以有效地利用硬件加速训练过程。这一特性使得Transformer模型在大规模数据和硬件环境下具有出色的训练效率。
  9. 前馈神经网络(Feed-Forward Neural Network):

    在每个编码器层中,前馈神经网络用于进一步抽象和组合特征表示。
  10. 编码器-解码器注意力(Encoder-Decoder Attention):

    解码器中的编码器-解码器注意力机制用于将上下文编码与生成的部分序列对齐,以确保生成的下一个词考虑了输入序列的信息。
  11. 掩码自注意力(Masked Self-Attention):

    在解码器中,为了确保生成序列时只能看到之前已生成的部分,使用掩码自注意力机制。这防止模型提前看到未来的信息。
  12. 输出(Output):

    输出是解码器生成的预测序列,通常表示目标语言文本或任务的输出。
  13. Softmax和线性变换(Softmax and Linear Transformation):

    解码器的输出通过Softmax函数将得分转化为概率分布,并通过线性变换映射到与词汇表大小相同的维度上。
  14. 损失函数(Loss Function):

    模型的输出与真实目标序列进行比较,使用交叉熵等损失函数来衡量预测分布与真实分布之间的差异,用于训练和优化模型。
  15. 输出概率分布(Output Probabilities):

    模型输出的概率分布表示每个位置上每个词的预测概率,用于生成最终的预测结果。

总的来说,Transformer是一种强大的深度学习架构,已经在自然语言处理等领域取得了卓越的成就。它的自注意力机制、多头注意力、多层堆叠、位置编码等关键部分使得它能够高效地处理序列数据,并在各种自然语言处理任务中表现出色。同时,Transformer的并行化训练和MASK机制等技术使得它非常适合处理长序列和大规模数据。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值