#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int MAXN = 100;
char a[MAXN];
int n, L, cnt;
bool dfs(int cur)
{
/*每递归调用一次,形成的搜索串的名次就会加一,用cnt记录。其中后缀++表示的是先判断,后相加*/
/*cur表示递归的深度,即符合题目要求的串的长度*/
if (cnt++ == n)
{
for (int i = 0; i < cur; i++)
{
printf("%c", 'A' + a[i]);
if ((i + 1) % 4 == 0)
{
if ((i + 1) % 64 == 0) cout << endl;
else if (i != cur - 1)putchar(' ');
}
}
if (cur % 64) cout << endl;
printf("%d\n", cur);
return false;
}
for (int i = 0; i < L; i++)
{
///每一个a[cur]一共有L种选择
a[cur] = i;
int ok = 1;
for (int j = 1; j * 2 <= cur + 1; j++)
{
int equal = 1;
///判断是否有连续相同的字符串
for (int k = 0; k < j; k++)
{
if (a[cur - k] != a[cur - k - j])
{
equal = 0;
break;
}
}
if (equal)
{
ok = 0;
break;
}
}
if (ok)
///递归搜索。如果找到解,则直接退出。
if (!dfs(cur + 1))
return false;
}
return true;
}
int main()
{
while (scanf("%d%d", &n, &L)==2)
{
if (n == 0 && L == 0) break;
memset(a, 0, sizeof(a));
cnt = 0;
dfs(0);
}
return 0;
}
注意:
1、根据题意描述,易知在枚举第cur位时,只用检查它添加后该串是否合法,而不必去检查cur之前的串是否合法,因为这一步检查在枚举cur之前早已经做过了。这一点类似于八皇后问题(只需要判断当前皇后是否和前面的皇后冲突,并不需要判断以前的皇后是否相互冲突-那些皇后在以前已经判断过了)。
2、注意此题的输出,《算法竞赛入门经典》并没有描述正确的输入
3、
这一步作用很大,减掉很多不必要的尝试。
另外举出一个会耗很多多余的时间的代码(Running Error)
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int MAXN = 100;
char a[MAXN];
int n, L, cnt;
void dfs(int cur)
{
///每递归调用一次,形成的搜索串的名次就会加一,用cnt记录。其中后缀++表示的是先判断,后相加
///cur表示递归的深度,即符合题目要求的串的长度
if (cnt++ == n)
{
for (int i = 0; i < cur; i++)
{
printf("%c", 'A' + a[i]);
if ((i + 1) % 4 == 0)
{
if ((i + 1) % 64 == 0) cout << endl;
else if (i != cur - 1)putchar(' ');
}
}
if (cur % 64) cout << endl;
printf("%d\n", cur);
return ;
}
for (int i = 0; i < L; i++)
{
///每一个a[cur]一共有L种选择
a[cur] = i;
int ok = 1;
for (int j = 1; j * 2 <= cur + 1; j++)
{
int equal = 1;
for (int k = 0; k < j; k++) ///判断是否有连续相同的字符串
{
if (a[cur - k] != a[cur - k - j])
{
equal = 0;
break;
}
}
if (equal)
{
ok = 0;
break;
}
}
if (ok)
//if (!dfs(cur + 1))
// return false;
dfs(cur+1);
}
// return true;
}
int main()
{
while (scanf("%d%d", &n, &L)==2)
{
if (n == 0 && L == 0) break;
memset(a, 0, sizeof(a));
cnt = 0;
dfs(0);
}
return 0;
}
这个代码在提交时会报Running Error。栈溢出。
在debug中看的很清楚。值得深思!!!