GPT : Improving Language Understanding by Generative Pre-Training

该论文提出了GPT方法,通过无监督预训练和有监督微调改进自然语言理解。首先在大量无标签数据上训练语言模型,然后在特定任务上微调。使用Transformer架构解决了长依赖问题,并在多个NLP任务中取得显著效果。
摘要由CSDN通过智能技术生成

参考论文:Improving Language Understanding by Generative Pre-Training

论文链接:https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

这篇论文是基于文本分类的这篇论文上进行改进,这篇论文所提出的方法称之为GPT

前言

在之前的博客中讲过预训练的好处,并且预训练可以以多种方式参与到后续的下游任务中,这里就不再赘述。在这篇论文中,探索出了一种对自然语言理解任务的半监督方法,融合了无监督的预训练(pre-training)和有监督的微调(fine-tuning)过程。本文提出了一种通用表示,能够在范围广泛的任务中稍加修改、适应就能快速进行transfer.整个过程分成两个阶段。

阶段一:在无标签的海量数据中训练语言模型,学习神经网络模型的参数。

阶段二:应用阶段一训练完成模型参数用相关标签数据训练target task。

文本分类这篇论文采用了3层的单向LSTM,无attention,带有少量dropout 参数,而本文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值