机器学习
文章平均质量分 81
山高路远坑很深
本科在读
展开
-
Matlab实现简单K-means聚类算法
K-means算法简要思想:算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。(1)适当选择k个类的初始中心;(2)在第k次迭代中,对任意一个样本,求其到各中心的距离,将该样本归到距离最短的中心所在的类;(3)利用均值等方法更新类的中心值;(4)对于所有的c个聚类中心,如果利用(2)(3)的迭代原创 2017-03-13 17:40:35 · 15366 阅读 · 29 评论 -
Matlab实现BP神经网络和RBF神经网络(一)
本实验依托于教材《模式分类》第二版第六章(公式符号与书中一致)实验内容:设计编写BP神经网络和RBF神经网络,对给定数据集进行分类测试,并将分类准确率与SVM进行对比。实验环境:matlab2016a数据集:数据集大小3*3000,表示3000个样本,每个样本包含2个特征,第三行表示样本所属的分类。对于此次实验编写的BP神经网络和RBF神经网络,均将原始数据集分为训练集和测试集两部分,训练集含270原创 2017-05-09 14:43:36 · 33453 阅读 · 9 评论 -
Matlab实现BP神经网络和RBF神经网络(二)
在上一篇博文中:Matlab实现BP神经网络和RBF神经网络(一) 中,我们讨论了BP网络设计部分,下面我们将设计RBF网络并将它们结果与SVM对比。数据格式不变,详情请看上一篇博文。RBF神经网络:RBF网络和BP网络都是非线性多层前向网络,它们都是通用逼近器。对于任一个BP神经网络,总存在一个RBF神经网络可以代替它,反之亦然。但是这两个网络也存在着很多不同点,他们在网络结构、训练算法、网络资源原创 2017-05-09 15:50:49 · 19945 阅读 · 12 评论 -
Matlab自带的分类学习工具箱(SVM、决策树、Knn等分类器)
在matlab中,既有各种分类器的训练函数,比如“fitcsvm”,也有图形界面的分类学习工具箱,里面包含SVM、决策树、Knn等各类分类器,使用非常方便。接下来讲讲如何使用。启动:点击“应用程序”,在面板中找到“Classification Learner”图标点击即启动,也可以在命令行输入“classificationlearner”,回车,也可启动。如下图:导入数据:点击“New Sessio原创 2017-05-08 22:40:23 · 76788 阅读 · 36 评论 -
matlab自带函数实现BP神经网络
利用feedforwardnet函数建立BP神经网络,十分简单:clear;load input_white.mat;load output_white.mat;input=input_white'; %转置为F*N矩阵,F为特征的个数,N为样本的个数output=output_white';%[norminput,norminputps]=mapminmax(input); %归一原创 2017-04-20 22:48:23 · 4346 阅读 · 0 评论 -
利用基本梯度下降法和牛顿法对样本进行判别
机器学习实验五,详情请参考《模式分类》第二版第五章课后上机练习5.4节实验环境:Matlab 2016a基本梯度下降法和牛顿法:我们在寻找能将两类类别分开的权向量时采用的方法是:定义一个准则函数J(a),当a是解向量时,J(a)最小。这样就将问题简化为一个标量函数的极小化问题——通常可以用梯度下降法来解决。梯度下降法的原理非常简单,首先从一个任意选择的权向量a(1)开始,计算其梯度向量,下一个值a(原创 2017-04-18 10:53:32 · 1438 阅读 · 0 评论 -
parzen窗方法和k近邻方法估计概率密度
机器学习实验四,详情请参考《模式分类》第二版第四章课后上机练习4.3、4.4节实验环境:Matlab2016aParzen窗估计方法:已知测试样本数据x1,x2,…,xn,在不利用有关数据分布的先验知识,对数据分布不附加任何假定的前提下,假设R是以x为中心的超立方体,h为这个超立方体的边长,对于二维情况,方形中有面积V=h^2,在三维情况中立方体体积V=h^3。 根据以下公式,表示x是否落入超立方原创 2017-04-06 22:41:53 · 19935 阅读 · 3 评论 -
利用最大似然估计方法估计参数
机器学习实验三,详情请参考《模式分类》第二版第三章课后上机练习3.2节实验环境:Matlab2016a实验内容:给定以下w1和w2的三维数据,考虑不同维数下的高斯概率密度模型:(a)编写程序,对表格中的类w1中的3个特征,分别求解最大似然估计。 (b)修改程序,处理二维数据的情形。然后处理对表格中的类w1中的任意两个特征的组合(3种可能)。 (c)修改程序,处理三维数据的情形。然后处理表格中类w原创 2017-03-27 17:04:01 · 17347 阅读 · 1 评论 -
利用贝叶斯判别函数设计分类器
详情请参阅《模式分类》第二版第二章上机练习2.5节第2题数据说明:有w1,w2,w3三组样本数据如下(符合正态分布): (1)假设P(w1)=P(w2)=0.5,P(w3)=0,仅利用x1特征值为这两类判别设计一个分类器,并确定样本的经验训练误差,即误分点的百分比。 (2)假设P(w1)=P(w2)=0.5,P(w3)=0,利用x1,x2两个特征值为这两类判别设计一个分类器,并确定样本的经验训练原创 2017-03-19 20:48:23 · 4910 阅读 · 4 评论 -
Matlab实现Bagging(集成学习)算法
实验环境:Matlab2016a实验内容:实现Bagging算法,训练多个分量分类器,比较分量分类器和最后的总分类器的分类准确率。Bagging算法:从大小为n的原始数据集中,分别独立随机地选取n’个样本组成自助数据集,并且将这个过程独立进行许多次,直到产生很多个独立的自助数据集。然后,每个自助数据集都被独立地用于训练一个“分量分类器”,最终分类器的判决将根据这些“分量原创 2017-06-01 16:25:31 · 16298 阅读 · 7 评论