Matlab实现BP神经网络和RBF神经网络(一)

本实验依托于教材《模式分类》第二版第六章(公式符号与书中一致)

实验内容:

设计编写BP神经网络和RBF神经网络,对给定数据集进行分类测试,并将分类准确率与SVM进行对比。

实验环境:

matlab2016a

数据集:

数据集大小3*3000,表示3000个样本,每个样本包含2个特征,第三行表示样本所属的分类。对于此次实验编写的BP神经网络和RBF神经网络,均将原始数据集分为训练集和测试集两部分,训练集含2700个样本,测试集300样本,并且采用10-折交叉验证,将数据集分为10份,每次将其中一份作为测试,剩余作为训练,总共进行10次验证,得到10个准确率,将10个准确率求平均作为最终的衡量指标,与SVM分类效果进行对比。

本实验数据集下载:sample_ex6.mat

BP网络和RBF网络相似但有所不同,因此分开阐述,先来设计BP网络。

BP神经网络:

BP网络有三层,输入层,隐含层,输出层,输入层与隐含层之间有权值Wji,隐含层与输出层之间有权值Wkj(i,j,k分别代表各层的神经元数目)。根据给定数据规模,可设计输入层3个神经元(

  • 10
    点赞
  • 9
    评论
  • 52
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值