Matlab实现BP神经网络和RBF神经网络(二)

在上一篇博文中:Matlab实现BP神经网络和RBF神经网络(一) 中,我们讨论了BP网络设计部分,下面我们将设计RBF网络并将它们结果与SVM对比。

数据格式不变,详情请看上一篇博文。

RBF神经网络:

RBF网络和BP网络都是非线性多层前向网络,它们都是通用逼近器。对于任一个BP神经网络,总存在一个RBF神经网络可以代替它,反之亦然。但是这两个网络也存在着很多不同点,他们在网络结构、训练算法、网络资源的利用及逼近性能方面均有差异。RBF网络输入层与隐含层直接连接,相当于直接将输入向量输入到隐含层,隐含层的激活函数有几种,最常用的是高斯函数:

引用块内容

σ称为径向基函数的扩展常数,它反应了函数图像的宽度,σ越小,宽度越窄,函数越具有选择性。RBF网络传递函数是以输入向量与中心向量之间的距离|| X-Cj ||作为自变量的,把高斯函数中的r替换为|| X-C

©️2022 CSDN 皮肤主题:编程工作室 设计师:CSDN官方博客 返回首页

打赏作者

山高路远坑很深

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值