计算机视觉中的多视图几何
看风景的人lsy
这个作者很懒,什么都没留下…
展开
-
平面射影几何
2d射影几何和变换标签(空格分隔): 计算机视觉中的多视图几何直线的齐次表示:l=(a,b,c)Tl=(a,b,c)Tl=(a,b,c)^T点的齐次表示:x=(x1,x2,x3)Tx=(x1,x2,x3)Tx=(x_1,x_2,x_3)^T。点的欧式坐标(x1/x3,x2/x3)(x1/x3,x2/x3)(x_1/x_3,x_2/x_3)点在线上: xTl=0xTl=0x^Tl=...翻译 2018-05-04 19:15:16 · 1426 阅读 · 0 评论 -
摄像机和结构的3D重构
方法概述计算基本矩阵:x′iFxi=0xi′Fxi=0x_i'Fx_i=0,至少8组点(线性求解),7组也可以(非线性求解)计算摄像机矩阵:未标定则相差一个右乘矩阵;标定则可以唯一确定三角形法确定XXX 射影重构由两幅视图的一个点对应集唯一地确定了基本矩阵,则景物和摄像机可以仅由这些对应重构,这些重构是射影等价的。P2=P1H−1, P′2=P′1H−1,&nbs...原创 2018-08-25 22:32:25 · 685 阅读 · 2 评论 -
两视图几何
基本矩阵FFF的代数推导 x反向投影:X(λ)=P+x+λC,PP+=Ix反向投影:X(λ)=P+x+λC,PP+=Ix反向投影:X(\lambda)=P^+x+\lambda C,PP^+=I l′:(P′C)×(P′P+x)=[e′]×P′P+xl′:(P′C)×(P′P+x)=[e′]×P′P+xl':(P'C)×(P'P^+x)=[e']_×P'P^+x F=[e′]×P′P+...原创 2018-08-25 17:24:53 · 1253 阅读 · 0 评论 -
摄像机模型
模型⎡⎣⎢⎢⎢XYZ1⎤⎦⎥⎥⎥↦⎡⎣⎢fmxsfmymxpxmypy1⎤⎦⎥R[I|−C~]⎡⎣⎢⎢⎢XYZ1⎤⎦⎥⎥⎥=KR[I|−C~]⎡⎣⎢⎢⎢XYZ1⎤⎦⎥⎥⎥=P⎡⎣⎢⎢⎢XYZ1⎤⎦⎥⎥⎥[XYZ1]↦[fmxsmxpxfmymypy1]R[I|−C~][XYZ1]=KR[I|−C~][XYZ1]=P[XYZ1]\begin{bmatrix}X\\Y\\Z \\1 \end{bm...原创 2018-08-21 22:31:09 · 293 阅读 · 0 评论 -
算法评价和误差分析
记号:xxx表示测量值,x^x^\hat x表示估计值,x¯x¯\bar x表示真值RMS(均方根)残差 εres=[12n∑i=1nd(x′i,x^′i)2]1/2εres=[12n∑i=1nd(xi′,x^i′)2]1/2\varepsilon _{res} = [\frac 1 {2n} \sum_{i=1}^nd(x_i',\hat x_i')^2]^{1/2} εres=[14n...原创 2018-08-21 17:34:26 · 3243 阅读 · 0 评论 -
估计----2D射影变换
讲怎么求平面射影变换H直接线性变换(DLT)算法利用x′i×Hxi=0xi′×Hxi=0x_i' × Hx_i=0,hiThiTh^{iT}是HHH的第iii行。一般选择前2行 ⎡⎣⎢⎢0Tw′ixTi−y′ixTi−w′ixTi0Tx′ixTiy′ixTi−x′ixTi0T⎤⎦⎥⎥⎡⎣⎢h1h2h3⎤⎦⎥=0[0T−wi′xiTyi′xiTwi′xiT0T−xi′xiT−yi...原创 2018-08-20 22:06:51 · 849 阅读 · 0 评论 -
进一步讨论单视图几何
在透视影像下,一张景物平面与一张图像平面之间最一般的变换是平面射影变换经摄像机矩阵PPP映射成一条直线lll的空间的点集是平面PTlPTlP^Tl摄像机中心的重要性同一中心,P=KR[I|−C~], P′=K′R′[I|−C~],P′=(K′R′)(KR)−1PP=KR[I|−C~], P′=K′R′[I|−C~],P′=(K′R′)(KR)−1PP=KR[I|...原创 2018-08-23 17:06:29 · 805 阅读 · 0 评论 -
3D射影几何和变换
3为空间,点和平面对偶平面上的点的参数表示:X=MxX=MxX=Mx,MMM 是4*3矩阵,其列生成πTπT\pi^T的秩为3的零空间,即πTM=0TπTM=0T\pi^TM=0^T线的表示:A,BA,BA,B是直线上的点,P,QP,QP,Q是过直线的平面 W=[ATBT],W∗=[PTQT]W=[ATBT],W∗=[PTQT]W=\begin{bmatrix} A^T\\ B^T\end...原创 2018-08-20 14:59:09 · 887 阅读 · 0 评论 -
计算摄像机矩阵P
DLT算法 利用xi×PXi=0xi×PXi=0x_i×PX_i=0,得 ⎡⎣⎢⎢0TwiXTi−yiXTi−wiXTi0TxiXTiyiXTi−xiXTi0T⎤⎦⎥⎥⎡⎣⎢P1P2P3⎤⎦⎥=0[0T−wiXiTyiXiTwiXiT0T−xiXiT−yiXiTxiXiT0T][P1P2P3]=0\begin{bmatrix} 0^T & -w_iX_i^T & y_iX_i^T \...原创 2018-08-22 23:10:28 · 996 阅读 · 0 评论 -
2D射影几何和变换
线的点表示:x、yx、yx、y是线上点的平面坐标,则线上点可表示为x+αyx+αyx+\alpha y非满秩矩阵CCC所定义的二次曲线称作退化二次曲线,其上点包含两条线或者一条重线。C=lmT+mlTC=lmT+mlTC=lm^T+ml^T是两条线l、ml、ml、m。C∗=xyT+yxTC∗=xyT+yxTC^*=xy^T+yx^T由过点x或yx或yx或y的所有直线组成对偶二次曲线:CCC的...原创 2018-08-18 15:59:48 · 834 阅读 · 0 评论 -
透镜成像模型
p是相距,q是物距,f是焦距一个点的光线经过理想透镜后会汇聚在一点,该点可以通过平行光路和过透镜中心的光路相交来确定成像公式推导 由成像公式可知,同一物距的点,在同一理想透镜下,汇聚点具有相同的像距因为di << d0,所以,1/f = 1/di + 1/do ≈ 1/di。所以,透镜成像可近似于小孔成像。对于不同物距的点,像距相同=f 如果di=f的话,模型是正确...原创 2018-08-13 15:07:41 · 3095 阅读 · 3 评论 -
附录2 高斯分布与马氏距离
给定随机变量xi(i=1,...,N)xi(i=1,...,N)x_i(i=1,...,N)构成的矢量XXX,它的均值是X¯=E(X)X¯=E(X)\bar X=E(X),而ΔX=X−X¯ΔX=X−X¯\Delta X=X-\bar X,其协方差矩阵Σ=E(ΔXΔXT)Σ=E(ΔXΔXT)\Sigma=E(\Delta X \Delta X^T) 可知,矩阵ΣΣ\Sigma的对角元是单个变量x...原创 2018-07-11 21:30:39 · 3753 阅读 · 1 评论 -
透镜成像
一个点反射的光穿过透镜后汇聚到一点(制作透镜好难呀^o^) 可以看见,线是线汇聚到一点,随后会发散。汇聚的那个点所在的平面就是成像平面 那个汇聚点可以通过简单作图得到 调焦什么意思 成像平面的厚度为0,那么蜡烛前面或后面的点的反射光线不能在成像平面(如胶卷)上汇聚一点 所以,拍美女的时候调教让她的脸在胶卷上汇聚一点,拍的清楚。后面的背景会模糊。...原创 2018-05-24 22:50:59 · 611 阅读 · 0 评论 -
摄像机模型
基本针孔模型 (X,Y,Z)T↦(fX/Z,fY/Z)(X,Y,Z)T↦(fX/Z,fY/Z)(X,Y,Z)^T\mapsto(fX/Z,fY/Z)齐次坐标表示(两个坐标系的单位长度相同)⎡⎣⎢⎢⎢XYZ1⎤⎦⎥⎥⎥↦⎡⎣⎢fXfYZ⎤⎦⎥=⎡⎣⎢ff1000⎤⎦⎥⎡⎣⎢⎢⎢XYZ1⎤⎦⎥⎥⎥[XYZ1]↦[fXfYZ]=[f0f010][XYZ1] \begin{bmatri...原创 2018-05-22 22:14:09 · 245 阅读 · 0 评论 -
迭代估计方法---LM迭代
LM算法是介于牛顿法与梯度下降法之间的一种非线性优化方法,对于过参数化问题不敏感,能有效处理冗余参数问题,使代价函数陷入局部极小值的机会大大减小,这些特性使得LM算法在计算机视觉等领域得到广泛应用。 正规方程NΔ=JTJΔ=JTϵNΔ=JTJΔ=JTϵN\Delta=J^TJ\Delta=J^T\epsilon被增量正规方程NΔ=JTϵNΔ=JTϵN\Delta=J^T\epsilon,其中N...原创 2018-05-27 11:56:47 · 4628 阅读 · 0 评论 -
迭代估计方法---牛顿迭代
函数关系X=f(P)X=f(P)X=f(P),其中X是测量矢量,P是参数矢量。这是一个多参数,多输出的拟合问题。测量矢量认为是准确的,需要调参拟合。要求求出满足X=f(P^)+ϵX=f(P^)+ϵX=f(\hat P)+\epsilon 的矢量P^P^\hat P并使得||ϵ||||ϵ||||\epsilon||最小化。初始化:X=f(P0)+ϵ0X=f(P0)+ϵ0X=f(P_0)+\e...原创 2018-05-26 22:48:01 · 2010 阅读 · 0 评论 -
附录1 张量记号
示例x^=(x^1,x^2,x^3)T=H−1x=H−1(x1,x2,x3)T的张量表示是:x^i=(H−1)ijxjx^=(x^1,x^2,x^3)T=H−1x=H−1(x1,x2,x3)T的张量表示是:x^i=(H−1)jixj \mathbf {\hat x}=(\hat x^1,\hat x^2,\hat x^3)^T=H^{-1}\mathbf{x}=H^{-1}(x^1,x^2,x...原创 2018-09-03 21:24:25 · 682 阅读 · 0 评论