论文解读:3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation

3D U-Net通过3D卷积改进了传统的U-Net结构,解决了2D切片分割的冗余和效率问题。该模型利用稀疏标注的2D切片实现密集的3D分割,采用加权softmax损失函数,提高训练效率和分割效果,尤其在医学影像分割中表现优异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要点

1. 提出了3D U-Net:从稀疏标注的体素图像中学习的立体分割网络。
2. 有两个方案:第一是,在待分割立体图像中标注其中的一些切片,网络从这些标注中学习,再为这个空间提供密集的3D分割;第二是,假设已存在稀疏标注的数据集,直接在这个数据集上训练,然后为新的立体图像进行密集分割。

读引言

研究背景

  医学数据分析中立体数据是常见的(CT、MRI)。

为什么要研究

  以往slice-by-slice的标注方式是冗余并且低效的,因为相邻切片显示的信息几乎相同,而且逐切片学习出来的2D模型预测效果很差,没有考虑到空间上的互信息。本文提出只要求一部分2D切片生成密集的立体分割的思想,并给出了两种具体方法。

主要内容

3D U-Net改进于先前的U-Net结构,只是输入改为3D体积,并将所有操作替换为3D操作,如3D卷积、3D最大池化和3D上采样。此外,本文中尽量避免了瓶颈操作,并使用批归一化加速收敛。
为什么这里要避免瓶颈,而残差网络等要鼓励使用瓶颈?
因为ResNet的bottleneck是指使用1x1卷积,主要是为了通过降通道数量,来降卷积的参数和计算量,这中间会有信息损失,但影响不大,因为毕竟是负责残差的计算;但是在分割任务中利用池化层获取来多尺度信息,池化操作本身就会损失许多信息,所以反而要在最大池化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值