论文阅读笔记 UGNet: Underexposed Images Enhancement Network based on Global Illumination Estimation

摘要

文章提出了一个新的神经网络对曝光不足的图片增强。与基于Retinex算法的分解方法不同,文章引入平滑扩张卷积去估计输入图像的全局亮度。提出联合内容,颜色,纹理,和平滑度的联合损失函数。

背景介绍

pass

方法详述

UGNet 可以分为两个部分,全局亮度估计网络,和细节增强网络。文章还详细说了多项损失函数的细节。

A 全局亮度估计网络

当前的一些增强网络通常会通过pooling,下采样或者多尺度连接来得到大范围的上下文信息和全局亮度信息。但是,一方面,对于密集的预测任务,多尺度上下文信息的收集需要扩大感受野。另一方面下采样会损失空间信息。
为了解决这个问题,文章用平滑扩张卷积来估计全局亮度信息。所谓的平滑扩张卷积由 分开共享的卷积层和扩张卷积层组成。扩张卷积可以覆盖更多的临近像素,而且不会产生像下采样那样的细节损失。对于扩张卷积造成的网格伪影,分开共享的卷积层可以来解决这个问题。在扩张卷积之前插入分离共享卷积。

在这里插入图片描述
如图一所示,UGNet是一个类似自编码器的结构;
注:(BN适用于判别模型中,比如图片分类模型。因为BN注重对每个batch进行归一化,从而保证数据分布的一致性,而判别模型的结果正是取决于数据整体分布。但是BN对batchsize的大小比较敏感,由于每次计算均值和方差是在一个batch上,所以如果batchsize太小,则计算的均值、方差不足以代表整个数据分布;IN适用于生成模型中,比如图片风格迁移。因为图片生成的结果主要依赖于某个图像实例,所以对整个batch归一化不适合图像风格化中,在风格迁移中使用Instance Normalization不仅可以加速模型收敛,并且可以保持每个图像实例之间的独立。)

B 细节增强部分

前面的亮度估计网络产生全局视角,恢复低亮度区域。但是还有一些问题。比如不充足的曝光带来的颜色失真。用三个卷积层来实现这个功能

C 损失函数

MSE不适合这个任务的损失,所以重新设计了损失函数,包括4个部分,颜色质量,内容质量,结构质量和噪声质量。这个部分没什么看头 pass

思考

文章的两个方面值得借鉴 扩张卷积与 IN

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值