EMA对模型参数做平均 增加模型的健壮性
原理:
我们现在有n个数据 [
θ
1
,
θ
2
…
θ
n
\theta_1 ,\theta_2\dots\theta_n
θ1,θ2…θn]
1 普通求平均数:
V
‾
=
1
n
∑
1
n
θ
i
\overline{V} = \frac{1}{n}\sum_1^n\theta_i
V=n1∑1nθi
2 指数移动平均数:
V
t
=
β
⋅
V
t
−
1
+
(
1
−
β
)
⋅
θ
t
{V_t} = \beta\cdot{V_{t-1}}+(1-\beta)\cdot\theta_t
Vt=β⋅Vt−1+(1−β)⋅θt ,
β
\beta
β是加权因子 一般为0.9到1 之间
参考 https://zhuanlan.zhihu.com/p/68748778