EMA 指数移动平均

EMA对模型参数做平均 增加模型的健壮性
原理:
我们现在有n个数据 [ θ 1 , θ 2 … θ n \theta_1 ,\theta_2\dots\theta_n θ1,θ2θn]
1 普通求平均数: V ‾ = 1 n ∑ 1 n θ i \overline{V} = \frac{1}{n}\sum_1^n\theta_i V=n11nθi
2 指数移动平均数: V t = β ⋅ V t − 1 + ( 1 − β ) ⋅ θ t {V_t} = \beta\cdot{V_{t-1}}+(1-\beta)\cdot\theta_t Vt=βVt1+(1β)θt , β \beta β是加权因子 一般为0.9到1 之间

参考 https://zhuanlan.zhihu.com/p/68748778

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值