前面介绍了TensorFlow的主要概念,并给出了一个完整的TensorFlow程序来训练神经网络.这一章将介绍:如何设计和优化神经网络,使得他能够更好地对未知的样本进行预测。
1.介绍深度学习与深层神经网络的概念,并给出一个实际的样例来说明深层神经网络可以解决部分浅层神经网络解决不了的问题。
2.介绍如何设定神经网络的优化目标。这个优化目标也就是损失函数,所以将分别介绍分类问题和回归问题中比较常用的几种损失函数。除了使用经典的损失函数外,还将给出一个样例来讲解如何通过损失函数的设置,使神经网络优化的目标更加接近实际问题的需求。
3.将更加详细地介绍神经网络的反向传播算法,并且给出一个TensorFlow框架来实现反向传播的过程。
4.在对神经网络优化有了进一步了解之后,最后将介绍在神经网络优化中经常遇到的几个问题,并且给出解决这些问题的具体方法。
1.1深度学习与深层神经网络
维基百科对深度学习的精确定义为“一类通过多层非线性变换对高复杂性数据建模算法的合集”。因为深层神经网络是实现“多层非线性变换”最常用的一种方法,所以在实际中基本上可以认为深度学习就是深层神经网络的代名词。从维基百科给出的定义看出,深度学习有两个非常重要的特性——多层和非线性。本节将给出详细的解释:
1.先介绍线性变换存在的问题,以及为什么要在深度学习的定义中强调“复杂问题”