sklearn分类算法-决策树、随机森林

sklearn分类算法-决策树、随机森林

一.决策树
1.概念
决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法
比如:你母亲要给你介绍男朋友,是这么来对话的:
女儿:多大年纪了?
母亲:26。
女儿:长的帅不帅?
母亲:挺帅的。
女儿:收入高不?
母亲:不算很高,中等情况。
女儿:是公务员不?
母亲:是,在税务局上班呢。
女儿:那好,我去见见。
在这里插入图片描述
2.计算例子
银行贷款数据
在这里插入图片描述
①引申-信息熵
假如32支球队中猜测最后的总冠军,你会怎么猜测
②发明人:
信息论的创始人,香农是密歇根大学学士,麻省理工学院博士。1948年,香农发表了划时代的论文——通信的数学原理,奠定了现代信息论的基础。
信息的单位:比特

③结论
32支球队,log32=5比特(猜测5次)
64支球队,log64=6比特(猜测6次)
“谁是世界杯冠军”的信息量应该比5比特少。香农指出,它的准确信息量应该是:

H = -(p1logp1 + p2logp2 + … + p32log32)
H的专业术语称之为信息熵,单位为比特。
公式:
在这里插入图片描述
当这32支球队夺冠的几率相同时,对应的信息熵等于5比特
信息和消除不确定性是相联系的
决策树的划分依据之一-信息增益
特征A对训练数据集D的信息增益g(D,A),定义为集合D的信息熵H(D)与特征A给定条件下D的信息条件熵H(D|A)之差,即公式为:
在这里插入图片描述
注:信息增益表示得知特征X的信息而使得类Y的信息的不确定性减少的程度
在这里插入图片描述
3.常见决策树使用的算法
ID3
信息增益 最大的准则
C4.5
信息增益比 最大的准则
CART
回归树: 平方误差 最小
分类树: 基尼系数 最小的准则 在sklearn中可以选择划分的原则
4.API

from sklearn.tree import DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,random_state=None)
决策树分类器
criterion:默认是’gini’系数,也可以选择信息增益的熵’entropy’
max_depth:树的深度大小
random_state:随机数种子

method:
decision_path:返回决策树的路径
5.优缺点
①优点:
简单的理解和解释,树木可视化。
需要很少的数据准备,其他技术通常需要数据归一化,
②缺点:
决策树学习者可以创建不能很好地推广数据的过于复杂的树,这被称为过拟合。
决策树可能不稳定,因为数据的小变化可能会导致完全不同的树被生成。
二.集成学习方法-随机森林
1.集成学习方法
集成学习通过建立几个模型组合的来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成单预测,因此优于任何一个单分类的做出预测。
2.定义
定义:在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。
例如, 如果你训练了5个树, 其中有4个树的结果是True, 1个数的结果是False, 那么最终结果会是True。
3.学习算法
根据下列算法而建造每棵树:
用N来表示训练用例(样本)的个数,M表示特征数目。
输入特征数目m,用于确定决策树上一个节点的决策结果;其中m应远小于M。
从N个训练用例(样本)中以有放回抽样的方式,取样N次,形成一个训练集(即bootstrap取样),并用未抽到的用例(样本)作预测,评估其误差。

为什么要随机抽样训练集?  
如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的
为什么要有放回地抽样?
  如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是“有偏的”,都是绝对“片面的”(当然这样说可能不对),也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决。
4.API

from sklearn.ensemble import RandomForestClassifier

class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’,
max_depth=None, bootstrap=True, random_state=None)
随机森林分类器
n_estimators:integer,optional(default = 10) 森林里的树木数量
criteria:string,可选(default =“gini”)分割特征的测量方法
max_depth:integer或None,可选(默认=无)树的最大深度
bootstrap:boolean,optional(default = True)是否在构建树时使用放回抽样
5.优点
在当前所有算法中,具有极好的准确率
能够有效地运行在大数据集上
能够处理具有高维特征的输入样本,而且不需要降维
能够评估各个特征在分类问题上的重要性
对于缺省值问题也能够获得很好得结果

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
下面是一个基于Python的文本分类的代码分享,使用了sklearn中的决策树随机森林算法。 首先,需要安装sklearn库,可以使用以下命令进行安装: ``` pip install -U scikit-learn ``` 然后,导入所需的库和模块: ```python from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score ``` 接下来,加载数据集并进行数据预处理: ```python # 加载数据集 data = open('data.txt').read() # 分割为文本和类别 text, labels = [], [] for line in data.split('\n'): text.append(line.split('\t')[0]) labels.append(line.split('\t')[1]) # 将文本数据转换为数值特征向量 vectorizer = CountVectorizer() X = vectorizer.fit_transform(text) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, random_state=42) ``` 然后,使用决策树进行文本分类: ```python # 创建决策树分类器并进行训练 dt_classifier = DecisionTreeClassifier() dt_classifier.fit(X_train, y_train) # 在测试集上进行预测 y_pred_dt = dt_classifier.predict(X_test) # 计算准确率 accuracy_dt = accuracy_score(y_test, y_pred_dt) print("决策树准确率:", accuracy_dt) ``` 最后,使用随机森林进行文本分类: ```python # 创建随机森林分类器并进行训练 rf_classifier = RandomForestClassifier() rf_classifier.fit(X_train, y_train) # 在测试集上进行预测 y_pred_rf = rf_classifier.predict(X_test) # 计算准确率 accuracy_rf = accuracy_score(y_test, y_pred_rf) print("随机森林准确率:", accuracy_rf) ``` 以上就是基于Python的文本分类代码示例,使用了sklearn中的决策树随机森林算法。可以根据自己的数据集和需求进行相应的调整和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值