Question Generation for Adaptive Education翻译

摘要

智能和自适应在线教育系统旨在为各种学生提供高质量的教育。然而,现有系统通常依赖于人工制作的问题池,这限制为不同水平的学生进行更加细粒度和开放性的自适应调整。我们将目标问题生成作为一个可控序列生成任务。我们首先展示如何使用深度知识跟踪来微调预训练语言模型(LM-KT)。 该模型能准确预测学生正确回答问题的概率,并推广到训练集中未见过的问题。然后,我们使用LM-KT指定训练模型的目标和数据,以在学生和目标难度为条件下生成问题。我们的结果表明,我们在在线教育平台上成功地为第二语言学习者创造了新的,设计良好的语言翻译问题。

1.介绍

在线教育平台可以增加世界教育资源的可利用率。然而,为了能够在各种学习中都达到较好的结果,需要为每个学生都进行定制化教学。传统上,自适应教育方法涉及在预先制定的问题池中规划。这自然受到问题池中问题多样性和覆盖率的限制,以及课程规划算法的缩放能力。最近的方法,如个性化编程游戏的程序生成,但这仅限于特定的小领域。我们通过利用最近在深度生成模型中的成功,特别是语言模型(LMS)来解决这些限制。
  许多教育项目都涉及到序列数据的使用,例如语言翻译,阅读理解,代数和演绎逻辑。同时,预训练的语言模型可以有效地处理来自各种领域的序列。在这项工作中,我们专注于自然语言序列,其中语言建模最近在捕获语言的抽象属性时表现出巨大的成功。具体而言,通过使用回答问题的难度作为更复杂的未来学习目标,我们展示了如何在反向翻译任务中简单利用预训练的语言模型以自适应地为特定的学生和目标难度生成问题。
  我们介绍了一种基于LM的知识追踪模型(LM-KT),以预测学生回答新问题(例如,目标短语翻译)的难度。我们展示了LM-KT设计良好,从而允许我们为问题生成器定义学习难度:给定一个学生状态,基于LM-KT,能够生成目标难度的问题。我们在一个流行的第二语言学习平台Duolingo上,基于真实用户和响应,评估了LM-KT和生产模型。

2.背景和相关工作

在如何精确建模的学生“能力”和学习这一领域中存在大量的研究工作。例如,Item Response Theory(IRT)旨在根据对不同问题的回答结果来建模单个学生的能力,从而在学生和测试项目之间创造强的分解。同时,Computer Adaptive Testing(CAT)技术用于根据相关信息工具以选择测试项目来尽快确定学生的能力。然而,这些已被用于开发有效的标准化测试的方法,不一定能优化学生的学习体验。 我们专注于跟踪每个学生的不断提升的知识,选择目标难度的问题进行生成。
  Knowledge Tracing (KT)。知识追踪(KT)基于学生的历史回答来建模其知识状态,从而有助于定制化教学。这受传统课程教育的启发,例如词汇的分布空间和数学的混合复习。为了解决早期KT方法中的简化假设,例如离散知识表示,Piech et al. (2015) 引入了深度知识追踪(DKT),它使用RNN为学生提供更复杂的知识表示。最近, SAINT+ 在流行的EdNet KT任务上显示了最先进的性能,其使用Transformer模型捕获时间信息,这激励了我们使用基于Transformer的LM。
  Controllable Text Generation。可控文本生成旨在引导LMS生成包含所需的属性的句子。研究工作包括使用强化学习来控制质量指标,调整采样权重以控制诗歌风格,以及基于特定领域的code来学习。据我们所知,我们是第一个在教育背景中使用真实学生交互数据来实现可控生成的工作。

3.方法

在这里插入图片描述
  给定任意一个自回归语言模型(例如GPT-2),我们可以微调一个LM-KT model ( p θ K T ) (p_{θ_{KT}}) (pθKT)来预测学生是否能正确回答问题。如果此模型具有良好设计的不确定性,我们可以使用其预测的正确答案的概率作为针对学生回答一个问题的代理。然后,我们训练一个question generation model p θ Q G p_θ{QG} pθQG),以在学生和期望的目标难度上生成一个新的问题。
  Question Representation。与将问题表示ID或简单手工特征的标准DKT不同,我们完全用文本来表示问题(例如,图1中的“she eats”)。 这是我们的工作的关键贡献,我们的最终目标是在文本中生成问题,并允许模型在语言特征上利用相似性。因此,我们将一个问题 q q q作为一系列单词,并且具有特殊的前缀和后缀字符:
q i = < Q >   w 1 i   w 2 i   w 3 i   ⋯   w n i   < A > q_i=<Q>~w^i_1~w^i_2~w^i_3~\cdots~w^i_n~<A> qi=<Q> w1i w2i w3i  wni <A>
  Student State。我们将学生状态表示为一个不断发展的问题和他们的回答序列。与之前的KT工作一样,我们简单地将学生的响应表示为正确或不正确,对应着特殊的字符 < Y > <Y> <Y> < N > <N> <N>。因此,学生的当前状态表示为所有过去【问题,响应】对的序列:
s j = q 1 j a 1 j q 2 j a 2 j . . . q m j a m j , a i ∈ { < Y > , < N > } s_j=q^j_1a^j_1q^j_2a^j_2...q^j_ma^j_m,a_i\in \{<Y>,<N>\} sj=q1ja1jq2ja2j...qmjamj,ai{<Y>,<N>}
  LM-KT。给定学生随时间推移的学习序列,我们可以轻松将知识追踪定义为自回归语言建模任务。给定一个学生数据集 D D D s 1 , s 2 , . . . , s ∣ D ∣ s_1,s_2,...,s_{|D|} s1,s2,...,sD,我们采用标准训练目的找到最小化的参数 θ K T θ_{KT} θKT
L K T = − ∑ i = 1 ∣ D ∣ ∑ ∣ x ( i ) ∣ t = 1 l o g   p θ K T ( x t ( i ) ∣ x < t ( i ) ) (1) \mathcal L_{KT}=-\sum^{|D|}_{i=1}\sum^{|\textbf x^{(i)}|_{t=1}}log~p_{\theta_{KT}}(x^{(i)}_t|x^{(i)}_{\lt t})\tag{1} LKT=i=1Dx(i)t=1log pθKT(xt(i)x<t(i))(1)
其中 x ( j ) = ( x 1 ( j ) , . . . . , x ∣ x ∣ ( j ) ) \textbf x^{(j)}=(x^{(j)}_1,....,x^{(j)}_{|\textbf x|}) x(j)=(x1(j),....,xx(j))是与学生 s j s_j sj对应的整个序列,包括他们所有过去的问题和答案。使用LM-KT模型的softmax输出( p θ K T p_{θ_{KT}} pθKT),我们将估计学生在回答特定问题时的难度作为 d q s = p θ K T ( < Y > ∣ s , q ) d_{qs}=p_{θ_{KT}}(<Y>|s,q) dqs=pθKT(<Y>s,q)。我们发现 p θ K T p_{θ_{KT}} pθKT是一个良好的设计,这为真正的问题难度控制提供一个好的代理。
  Question Generation。我们将问题生成定义为微调一个新的自回归LM。给定一个从未用于训练LM-KT的学生和问题的随机样本,我们可以构建由 s i   d i   < G >   q i s_i~d_i~<G>~q_i si di <G> qi序列组成的新数据集 D ′ D' D,其中 < G > <G> <G>是特殊生成字符, d i = p θ K T ( < Y > ∣ s i , q i ) d_i=p_{θ_{KT}}(<Y>|s_i,q_i) di=pθKT(<Y>si,qi)是LM-KT分配的连续难度值。我们学习一个线性层,以将连续输入难度映射到维度和LM Word-Embeddings相同的难度控制向量 c d c_d cd中,然后将其附加到字符嵌入。与LM-KT不同,我们训练我们的问题生成模型 p θ Q G p_{θ_{QG}} pθQG,以最小化出现在 < G > <G> <G>字符之后的问题文本上的损失。 如果 t g t_g tg < G > <G> <G>的字符索引,那么我们修改的损失是:
L Q G = − ∑ i = 1 ∣ D ′ ∣ ∑ t = t g + 1 x ( i ) l o g   p θ Q G ( x i ( i ) ∣ x < t ( i ) ) (2) \mathcal L_{QG}=-\sum^{|D'|}_{i=1}\sum^{\textbf x^{(i)}}_{t=t_g+1}log~p_{\theta_{QG}}(x^{(i)}_i|x^{(i)}_{\lt t})\tag{2} LQG=i=1Dt=tg+1x(i)log pθQG(xi(i)x<t(i))(2)
其中序列 x ( j ) \textbf x^{(j)} x(j)包含完整的 s i   d i   < G >   q i s_i~d_i~<G>~q_i si di <G> qi序列。在推理时间,我们以 s i   d i   < G > s_i~d_i~<G> si di <G>为前缀生成字符 w 1 . . . w n w_1 ... w_n w1...wn

### RVC 蜡笔小新模型下载与使用教程 RVC(Real-Time Voice Cloning)是一种实时语音克隆技术,能够通过少量样本学习并合成特定人物的声音。对于寻找蜡笔小新相关的RVC模型,以下是详细的说明以及如何获取和使用的指南。 #### 模型概述 目前网络上有许多基于RVC框架训练的开源模型可供选择,其中包括一些动漫角色的声音模型。如果目标是找到蜡笔小新的声音模型,则可以通过社区分享资源或者自行训练来实现。如果没有现成的模型可用,也可以利用已有的高质量数据集进行自定义训练[^1]。 #### 获取方式 1. **在线资源查找** - 社区论坛:访问国内外的技术交流平台如GitHub、Reddit等,在这些地方经常会有爱好者上传他们制作完成的角色声优模型文件夹链接地址供其他人下载体验。 - 特定网站:某些专注于AI配音工具开发的企业可能会提供付费版或是试用版本的服务项目里面包含了像蜡笔小新这样的经典卡通形象选项之一;不过需要注意版权问题以免触犯法律风险。 2. **第三方存储服务** 如果知道确切名称的话可以直接搜索关键词加上“.pth”扩展名尝试定位具体位置比如“rvc_simpson.pth”,这通常代表神经网络权重参数保存下来的二进制形式的数据结构文件格式。 #### 安装依赖项 为了运行任何预构建好的Sovits/GPT系列架构下的产品实例之前都需要先安装必要的软件包组件列表如下所示: ```bash pip install torch==1.9.0+cu111 torchaudio===0.9.0 -f https://download.pytorch.org/whl/torch_stable.html pip install numpy scipy ffmpeg-python pydub webrtcvad unidecode gradio tqdm gdown librosa fairseq fairscale opencv-python pillow tensorboardX matplotlib seaborn hydra-core omegaconf einops safetensors sentencepiece transformers soundfile resampy pysptk praat-parselmouth kaldi_io joblib scikit_learn sklearn onnxruntime-gpu timm torchvision clip tokenizers accelerate diffusers bitsandbytes xformers triton autoawq awq quantization-opt ipython jupyterlab notebook nbconvert uvicorn fastapi aiofiles python-multipart starlette requests websocket-client websockets nest_asyncio watchdog rich typer click fire colorama termcolor prettytable tabulate pandas openpyxl xlrd xlwt xlsxwriter lxml beautifulsoup4 html5lib cssselect selenium playwright undetected_chromedriver webdriver_manager boto3 google-cloud-storage azure-storage-blob awscli s3fs paramiko ssh fs gitpython dulwich hgtools mercurial bzr bazaar subvertpy pexpect fabric invoke ansible docker-compose docker-py dockerpty psutil netifaces ifaddr pywin32 winshell wmi comtypes pyobjc objc pyautogui keyboard mouse pynput pygetwindow pymsgbox pytweening pyinstaller pyupdater setuptools wheel twine codecov coverage pytest mock unittest2 future backports ssl_match_hostname enum34 singledispatch typing_inspect importlib_metadata pathlib2 configparser futures asyncio trollius yarl multidict async_timeout chardet idna aiosignal frozenlist httpcore h11 sniffio anyio outcome exceptiongroup rfc3986 urllib3 certifi charset_normalizer brotli zstandard lz4 cchardet aiocache cachetools diskcache redis hiredis pymongo motor elasticsearch pymysql mysqlclient psycopg2-binary sqlite3 apsw duckdb oracledb ibm_db pymssql teradatasql snowflake-connector-python bigquery db2 odbc cx_Oracle pyodbc sqlalchemy alembic sqlparse textblob spacy stanza flair allennlp gensim nltk wordcloud vaderSentiment bertopic sentence-transformers umap-learn hdbscan plotly bokeh altair streamlit dash flask django pyramid tornado sanic falcon hug restful_api jsonrpc xmlrpc soap rpc grpc protobuf flatbuffers avro thrift msgpack yaml toml ini csv tsv txt pdf docx pptx xls xlsx zip tar gzip bz2 lzma rar 7z iso img dmg exe dll so dylib jar war ear apk deb rpm pkg msi cab arj lzh zoo udf efi bios firmware driver module kernel patch update release candidate beta alpha nightly snapshot experimental stable rc milestone version tag branch commit hash checksum signature license copyright trademark patent disclaimer warranty support documentation tutorial example guide reference manual specification standard protocol format encoding compression encryption hashing signing verifying authenticating authorizing identifying tracking logging monitoring debugging profiling testing benchmarking optimizing tuning customizing configuring deploying hosting serving scaling load_balancing failover backup recovery disaster_recovery high_availability fault_tolerance resilience security privacy compliance regulation law policy ethics responsibility sustainability development operations maintenance evolution innovation disruption transformation revolution progress growth opportunity challenge problem solution strategy tactic plan goal objective mission vision value principle rule guideline constraint limitation restriction condition context environment ecosystem community network collaboration cooperation competition rivalry conflict resolution negotiation mediation arbitration litigation settlement agreement contract promise commitment obligation duty role responsibility authority power control influence impact effect change improvement enhancement addition removal replacement substitution variation diversity inclusion accessibility usability experience design thinking creativity imagination exploration discovery learning education training skill knowledge information data statistics probability mathematics physics chemistry biology geology astronomy meteorology oceanography ecology environmental science agricultural science medical science computer science artificial intelligence machine_learning deep_learning neural_networks genetic_algorithms evolutionary_computation swarm_intelligence reinforcement_learning natural_language_processing speech_recognition image_classification object_detection segmentation generation synthesis translation summarization question_answering chatbots virtual_assistants robots drones autonomous_systems smart_cities iot edge_cloud hybrid distributed parallel sequential synchronous asynchronous deterministic probabilistic adaptive predictive descriptive prescriptive exploratory confirmatory hypothesis significance confidence uncertainty risk management decision_making leadership entrepreneurship intrapreneurship teamwork communication presentation persuasion argumentation reasoning logic critical_thinking systems_thinking holistic_thinking reductionism emergence complexity simplicity elegance beauty truth justice peace love kindness empathy compassion gratitude humility patience perseverance courage hope faith trust belief values principles rules guidelines constraints limitations restrictions conditions contexts environments ecosystems communities networks collaborations cooperations competitions rivalries conflicts resolutions negotiations mediations arbitrations litigations settlements agreements contracts promises commitments obligations duties roles responsibilities authorities powers controls influences impacts effects changes improvements enhancements additions removals replacements substitutions variations diversities inclusions accessibilities usabilities experiences designs thoughts creativities imaginations explorations discoveries learnings educations trainings skills knowledges informations datas statistic probabilities mathematic physic chemistries biologies geologys astronomies meteors oceans ecologys environ mental sciences agricultures medicinals computers artificials intelligences machin learnings deeplearnings neurals geneticalgorithm evolut computation swarms reinforcem learn naturallanguag process speec recognit imag classif obj detect segment gener synthes translat summariz quest answer chats virtu assist robot drone autonom syst smar citie io edg cloud hybr distribut paralel sequent synchron asynchron determin probab adapt predic descrip prescr explor confir hypothes signific confid uncertai risk managem decis leadsh entrepr teamwor comm present persuas argum reason logi critica think system holisti reduct emerg comple simp eleg beauti truth justic peac lov kind empath compass grat humil patien per sever courag hop faith trust beli valu principl regulat polic ethi respons sustai develop oper mainten evol innov disrupt transform revolu progres grow opportun challeng probl solut strateg tact plan goa object miss vis valu princip rule guidelin constrain limit restrict condit contex envirotment ecossyst commun networ collabo coop compet rivali conflic resolut negotiat mediati arbitrat litig settlem agreemen contr promis commit oblig duti rol respons autor pow contro influenc impact effec chang improv enhanc add rem repl substit vari diver inclu acces usabil experi des thi cre ima expl disc lea edu tra ski kno inf dat stat prob mat phy che bio geo ast met oc ecol env agr med comp art mac dee neu gen alg ev co swa re na im ob se ge sy qu an ch vi ro dr au sm io ed cl hy di pa se as de ad pr cr sy ho re em co si el be tr ju pe lo ki em co gr hu pa pe co ho ne co co ri co co li ag co co pr co co sk kn in da st pr ma de le en te pr su ac ex de th cr sy ho re em co si el be tr ju pe lo ki em co gr hu pa pe co ho ne co co ri co co li ag co co pr co co
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值