P1 优化/数学规划

P1 优化/数学规划

优化/数学规划

Optimization/Mathematical Programming
从一个可行解的集合中,寻找出最优的元素

任何优化问题都可以写成如下形式
m i n i m i z e    f o ( x ) minimize \;f_o(x) minimizefo(x)
s u b j e c t    t o      f i ( x ) ≤ b i ,    i = 1.. m subject \; to\;\; f_i(x) \leq b_i,\;i=1..m subjecttofi(x)bi,i=1..m
X = [ x i , . . . , x n ] T O p t i m i z a t i o n    V a r i a b l e X=[x_i,...,x_n]^T\quad Optimization\;Variable X=[xi,...,xn]TOptimizationVariable
f o : R n ↦ R o b j e c t i v e    f u n c t i o n f_o:R^n \mapsto R \quad objective\;function fo:RnRobjectivefunction
f i : : R n ↦ R i n e q u a l i t y    c o n s t r a c t f_i::R^n \mapsto R \quad inequality\;constract fi::RnRinequalityconstract

目标找到最优 X ∗ X^* X
X ∗ o p t i m a l    ⟺    ∀ z , z ∈ { f i ( z ) ≤ b i , i = 1 , . . m } feasibleset X^* optimal \iff \forall z,z\in \lbrace f_i(z) \leq b_i,i=1,..m \rbrace \quad \text{feasibleset} Xoptimalz,z{fi(z)bi,i=1,..m}feasibleset
f o ( z ) ≥ f o ( x ∗ ) f_o(z) \geq f_o(x^*) fo(z)fo(x)
在这里插入图片描述 在这里插入图片描述

数据拟合问题

把离散的点拟合成一条线
在这里插入图片描述
y = a x 2 + b x + c y=ax^2+bx+c y=ax2+bx+c
最小二乘准则
目标: m i n ϵ 1 2 + . . . + ϵ n 2 \quad min\quad \epsilon_1^2+...+\epsilon_n^2 minϵ12+...+ϵn2
ϵ i = y i − ( a x i 2 + b x i + c ) ; i = 1 , . . . , n \epsilon_i=y_i-(ax_i^2+bx_i+c);i=1,...,n ϵi=yi(axi2+bxi+c);i=1,...,n

假设我们限定c一定大于0,就变成了有约束的优化问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值