百度深度学习初级认证——已过

博主分享了备考百度深度学习工程师认证的过程,包括报名的两种途径、备考资源和考试体验。备考主要依赖机器学习和深度学习的例题,重点复习了PaddlePaddle、CNN、RNN等知识点。考试中遇到的题目涉及GAN、优化算法、推荐系统等,提醒考生要对深度学习有扎实的理解。
摘要由CSDN通过智能技术生成

开头先放图,百度深度学习初级工程师认证已通过,记录一下备战和考试细节!!!

1.报考

当时是通过百度的AI Studio看到深度学习的认证了,价格是800,然后阴差阳错从百度技术学院的链接看到深度学习认证是500,觉得是优惠了,就赶紧报名了,后来发现,两个认证不一样。

(1)深度学习认证(开源大学):是线上考试,价格800.

具体细节:https://training.linuxfoundation.cn/certificate/details/16

(2)深度学习认证(Pearson VUE):是机考,价格500.

具体细节:http://bit.baidu.com/detail?id=162&type=2

基本教程是一样的,只有个别不一样。

2.备考

想在网上找一些例题练练的,发现没有相关题库,但是机器学习和深度学习的知识点就那么多,其他的例题也是能适用的。本人有一个机器学习和CNN以及RNN的基础,就在看完深度学习的课程之后,开始了刷题之旅。

两个题库:七月在线、牛客

本人主要是刷了机器学习、深度学习和Python的例题。可以按照大纲点出来的知识点进行刷题,这两个题库收录了很多相关的题目,有些接触过的点只要大纲不考可以不看。

还有就是PaddlePaddle的使用,基本的知识点是要知道的,可以直接参考飞浆官网的教程。

3.考试

报考之后,有三个月的时间准备,我选了一天约了考试,考试就是正常的签到,进考场。考试地点给提供免费的擦写板方便数学验算。

我失算了,本身觉得会有不少机器学习的题,一直在刷机器学习的题,上来就是一道GAN的题,直接懵了,后续答题过程中,发现机器学习的题目较少,主要还是在深度学习上。

有兴趣的同学还是需要了解一下Seq2seq,推荐系统,相似度计算,优化算法异同,我的时间比较赶,没有刷题库的数学题,我的考试数学是考了求导和矩阵性质,没有概率论考试。

题目记忆:

GAN的生成器是用什么数学概率?

ln(1+e^x)的二阶导数在x=0处的值是0.25

推荐算法的相似度计算的方法有?

几个优化算法的差据?(Adam,AdaDelta,RSM,动量)

经典CNN模型的异同点(改进点)?

...

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱缘之梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值