面试题.用回溯法解决图着色问题

1.题目描述

给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每个顶点着一种颜色。是否有一种着色法使G中每条边的2个顶点着不同颜色,求有多少种方法。

如下无向图结构和其邻接矩阵表示,共5个顶点

2.解题思路

使用到了邻接矩阵,还有就是color数组

要明确color数组代表的含义:color[n],大小为n,下标肯定代表顶点,里面的值代表这个顶点放的是哪种颜色。

Traceback(t)的t代表某一个顶点,这个顶点具体放哪种颜色不知道,肯定有个for循环从第一种颜色到最后一种颜色都要试一下,那么color[t]里就放当前这种颜色。OK(t)判断一下,如果可以,Traceback(t+1)。

OK(t)中,t顶点和哪些顶点有联系,我就去判断这些点放置的颜色有没有和我相同,若有相同的,return false;否则,return true。


作者:Super_邓帅
链接:https://www.jianshu.com/p/6a52b390f5fa
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

3.代码实现

#include<stdio.h>
#define n 5    //图有多少个点
#define m 4     //色数m
int count=0;    //方案数量 
int color[n]={0};          //第i个点里面放的是哪一种颜色 
int a[n][n]={0,1,1,1,0,      //a数组代表无向图的邻接矩阵 
             1,0,1,1,1,
             1,1,0,1,0,
             1,1,1,0,1,
             0,1,0,1,0};

bool OK(int t){
    for(int j=0;j<n;j++){
        if(a[t][j]==1){
            if(color[t]==color[j])
                return false;
        } 
    } 
    return true;
} 
        
void traceback(int t){
int oldvalue=0;
    if(t==n){    //n个点都已经走完
        count++; 
        return;
    }
    for(int i=1;i<=m;i++){   //i代表颜色 
        oldvalue=color[t];
        color[t]=i;
        if(OK(t)){
            traceback(t+1);
        } 
        color[t]=oldvalue;
    } 
} 
             
int main(){
    traceback(0);   //t代表无向图的顶点 
    printf("%d\n",count); 
    return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值