中值定理3----证明结论中有双中值(ξ,η)题型的一般解题步骤

证明结论中有双中值( ξ , η \xi ,\eta ξ,η)题型的一般解题步骤

题型一:仅有 f ′ ( ξ ) . f ′ ( η ) f'(\xi).f'(\eta) f(ξ).f(η)的情况

1.找三点
2.使用两次拉格朗日中值定理

构造辅助函数: h ( x ) = f ( x ) − Δ , 其 中 Δ 为 要 证 的 结 论 h(x)=f(x)-\Delta,其中\Delta为要证的结论 h(x)=f(x)ΔΔ

例 题 1 : f ( x ) ∈ C [ 0 , 1 ] , ( 0 , 1 ) 内 可 导 , f ( 0 ) = 0 , f ( 1 ) = 1. 请 证 明 : ( 1 ) . ∃ c ∈ ( 0 , 1 ) , f ( c ) = 1 2 ( 2 ) ∃   ξ , η ∈ ( 0 , 1 ) , 1 f ′ ( ξ ) + 1 f ′ ( η ) = 2 例题1:f(x)\in C[0,1],(0,1)内可导,f(0)=0,f(1)=1.请证明:\\\bold{(1)}.\exist c\in(0,1),f(c)=\frac{1}{2}\\\bold{(2)}\exist\ \xi,\eta \in (0,1),\frac{1}{f'(\xi)}+\frac{1}{f'(\eta)}=2 1f(x)C[0,1],(0,1),f(0)=0,f(1)=1.:(1).c(0,1),f(c)=21(2) ξ,η(0,1),f(ξ)1+f(η)1=2

证:
1°构造辅助函数 h ( x ) = f ( x ) − 1 2 h(x)=f(x)-\frac{1}{2} h(x)=f(x)21
h ( 0 ) = − 1 2 h(0)=-\frac{1}{2} h(0)=21
h ( 1 ) = 1 2 h(1)=\frac{1}{2} h(1)=21
∵ h ( 0 ) h ( 1 ) &lt; 0 , 根 据 零 点 定 理 可 得 \because h(0)h(1)&lt;0,根据零点定理可得 h(0)h(1)<0,
∃   c ∈ ( 0 , 1 ) 使 h ( c ) = 0 ⟹ f ( c ) = 1 2 \exist\ c\in(0,1) 使h(c)=0\Longrightarrow f(c)=\frac{1}{2}  c(0,1)使h(c)=0f(c)=21
2° 根据三点 h ( 0 ) , h ( 1 ) , f ( c ) h(0),h(1),f(c) h(0),h(1),f(c)使用两次拉格朗日中值定理
∃   ξ ∈ ( 0 , c ) , η ∈ ( c , 1 ) \exist \ \xi \in(0,c),\eta \in(c,1)  ξ(0,c),η(c,1)使得
f ′ ( ξ ) = f ( c ) − f ( 0 ) c − 0 = 1 2 c f ′ ( η ) = f ( 1 ) − f ( c ) 1 − c = 1 2 ( 1 − c ) f&#x27;(\xi)=\frac{f(c)-f(0)}{c-0}=\frac{1}{2c}\quad f&#x27;(\eta)=\frac{f(1)-f(c)}{1-c}=\frac{1}{2(1-c)} f(ξ)=c0f(c)f(0)=2c1f(η)=1cf(1)f(c)=2(1c)1
1 f ′ ( ξ ) = 2 c 1 f ′ ( η ) = 2 ( 1 − c ) \frac{1}{f&#x27;(\xi)}=2c \quad \frac{1}{f&#x27;(\eta)}=2(1-c) f(ξ)1=2cf(η)1=2(1c)
⟹ 2 c + 2 ( 1 − c ) = 2 \Longrightarrow 2c+2(1-c)=2 2c+2(1c)=2
∴ 1 f ′ ( ξ ) + 1 f ′ ( η ) = 2 \therefore \frac{1}{f&#x27;(\xi)}+\frac{1}{f&#x27;(\eta)}=2 f(ξ)1+f(η)1=2

题型二: ξ   , η 复 杂 度 不 同 的 情 况 \xi\ ,\eta复杂度不同的情况 ξ ,η

1.留复杂,单独把复杂的函数拿出来,其它的全部忽略

复杂等级:平方>相乘>相加

2.还原该复杂函数会出现两种情况
{ ( Δ ) ′ ( η ) ′ ⟹ 柯 西 定 理 ( Δ ) ′ ⟹ 拉 格 朗 日 定 理 \huge \begin{cases} \frac{(\Delta)&#x27;}{(\eta)&#x27;} \Longrightarrow 柯西定理 \\ (\Delta)&#x27;\Longrightarrow拉格朗日定理 \end{cases} (η)(Δ)西(Δ)

例 题 : f ( x ) ∈ C [ a , b ] , ( a , b ) 内 可 导 , a &gt; 0. 证 : ∃   ξ , η ∈ ( a , b ) . f ′ ( ξ ) = ( a + b ) f ′ ( η ) 2 η 例题:f(x)\in C[a,b],(a,b)内可导,a&gt;0.\\证:\exists\ \xi,\eta \in (a,b).f&#x27;(\xi)=(a+b)\frac{f&#x27;(\eta)}{2\eta} f(x)C[a,b],(a,b),a>0. ξ,η(a,b).f(ξ)=(a+b)2ηf(η)

解:
1° 留复杂,很明显 f ′ ( η ) 2 η \frac{f&#x27;(\eta)}{2\eta} 2ηf(η)为复杂函数,分析该函数:
f ′ ( η ) ⟹ 还原 f ( x ) 2 η ⟹ 还原 x 2 \frac{f&#x27;(\eta)\overset{\text{还原}}{\Longrightarrow}f(x)}{2\eta\overset{\text{还原}}{\Longrightarrow}x^2} 2η还原x2f(η)还原f(x)
可以发现这个是属于 ( Δ ) ′ ( η ) ′ \frac{(\Delta)&#x27;}{(\eta)&#x27;} (η)(Δ)的类型,所以使用柯西定理
2° 构造辅助函数,令 g ( x ) = x 2 , 则 g ′ ( x ) = 2 x ≠ 0 g(x)=x^2 ,则g&#x27;(x)=2x\neq0 g(x)=x2,g(x)=2x̸=0
使用柯西定理 ∃   η ∈ ( a , b ) . 使 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( η ) g ′ ( η ) \exists \ \eta \in (a,b).使\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f&#x27;(\eta)}{g&#x27;(\eta)}  η(a,b).使g(b)g(a)f(b)f(a)=g(η)f(η)
3° 代入至辅助函数
f ( b ) − f ( a ) b 2 − a 2 = f ′ ( η ) 2 η ⟹ 两边同乘(a+b) f ( b ) − f ( a ) b − a = ( a + b ) f ′ ( η ) 2 η \large \frac{f(b)-f(a)}{b^2-a^2}=\frac{f&#x27;(\eta)}{2\eta}\overset{\text{两边同乘(a+b)}}{\Longrightarrow}\frac{f(b)-f(a)}{b-a}=(a+b)\frac{f&#x27;(\eta)}{2\eta}\\ b2a2f(b)f(a)=2ηf(η)两边同乘(a+b)baf(b)f(a)=(a+b)2ηf(η)
4° 使用拉格朗日定理

∃   ξ ∈ ( a , b ) 使 f ′ ( ξ ) = f ( b ) − f ( a ) b − a \large \exists\ \xi\in(a,b) 使f&#x27;(\xi)=\frac{f(b)-f(a)}{b-a}  ξ(a,b)使f(ξ)=baf(b)f(a)

∵ f ( b ) − f ( a ) b − a = ( a + b ) f ′ ( η ) 2 η \large \because \frac{f(b)-f(a)}{b-a}=(a+b)\frac{f&#x27;(\eta)}{2\eta} baf(b)f(a)=(a+b)2ηf(η)

∴ f ′ ( ξ ) = ( a + b ) f ′ ( η ) 2 η \large \therefore f&#x27;(\xi)=(a+b)\frac{f&#x27;(\eta)}{2\eta} f(ξ)=(a+b)2ηf(η)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值