中值定理4----拉格朗日使用习惯

拉格朗日使用习惯

类型一:只要见到 f ( b ) − f ( a ) f(b)-f(a) f(b)f(a),的形式优先考虑拉格朗日定理

例题1: 若 f ′ ′ > 0. 有 f ′ ( 0 ) , f ′ ( 1 ) . 问 : f ( 1 ) − f ( 0 ) 大 小 ? 若f''>0.有f'(0),f'(1).问:f(1)-f(0)大小? f>0.f(0),f(1).f(1)f(0)?

####解:
1° 看到 f ( 1 ) − f ( 0 ) ⇒ 拉 格 朗 日 f(1)-f(0)\Rightarrow拉格朗日 f(1)f(0)
f ( 1 ) − f ( 0 ) = f ′ ( c ) ( 1 − 0 ) = f ′ ( c ) − − ( 0 &lt; c &lt; 1 ) f(1)-f(0)=f&#x27;(c)(1-0)=f&#x27;(c)\Large{--}\small(0&lt;c&lt;1) f(1)f(0)=f(c)(10)=f(c)(0<c<1)
f ′ ′ &gt; 0 ( 二 阶 导 数 大 于 0 ) ⟹ f ′ ↑ 一 阶 导 数 单 调 递 增 f&#x27;&#x27;&gt;0(二阶导数大于0)\Longrightarrow f&#x27;\uparrow 一阶导数单调递增 f>00f

$
\because 0<c<1 \
\therefore f’(0)<f’©<f’(1)
$

例题2: l i m x → ∞ f ′ ( x ) = e , l i m x → ∞ [ f ( x + 1 ) − f ( x ) ] = e 2 a , 问 : a = ? \underset{x\to\infty}{lim}f&#x27;(x)=e,\underset{x\to\infty}{lim}[f(x+1)-f(x)]=e^{2a},问:a=? xlimf(x)=e,xlim[f(x+1)f(x)]=e2a,a=?

####解:
看到 f ( x + 1 ) − f ( x ) ⇒ 拉 格 朗 日 f(x+1)-f(x)\Rightarrow拉格朗日 f(x+1)f(x)

由 拉 格 朗 日 定 理 : f ( x + 1 ) − f ( x ) x + 1 − x = f ′ ( ξ ) 得 由拉格朗日定理:\Large \frac{f(x+1)-f(x)}{x+1-x}=f&#x27;(\xi)得 :x+1xf(x+1)f(x)=f(ξ)

f ( x + 1 ) − f ( x ) = f ′ ( ξ ) ( x &lt; ξ &lt; x + 1 ) f(x+1)-f(x)=f&#x27;(\xi)\qquad(x&lt;\xi&lt;x+1) f(x+1)f(x)=f(ξ)(x<ξ<x+1)

∵ ξ ∈ ( x , x + 1 ) ⇒ f ′ ( x ) = f ′ ( ξ ) = e . \because \xi\in(x,x+1) \Rightarrow f&#x27;(x)=f&#x27;(\xi)=e. ξ(x,x+1)f(x)=f(ξ)=e.

又 ∵ f ( x + 1 ) − f ( x ) = f ′ ( ξ ) = e 2 a 又\because f(x+1)-f(x)=f&#x27;(\xi)=e^{2a} f(x+1)f(x)=f(ξ)=e2a

∴ e = e 2 a ⇒ a = 1 2 \therefore e=e^{2a} \Rightarrow a=\frac{1}{2} e=e2aa=21

类型二:只要看到三个点 f ( a ) , f ( b ) , f ( c ) ⟶ 2 次 拉 格 朗 日 f(a),f(b),f(c)\longrightarrow 2次拉格朗日 f(a),f(b),f(c)2

例题3: f ( x ) ∈ C [ a , b ] , 在 ( a , b ) 内 可 导 . ∣ f ′ ( x ) ∣ ≤ M , f ( x ) 在 ( a , b ) 内 至 少 一 个 0 点 . 求 证 : ∣ f ( a ) ∣ + ∣ f ( b ) ∣ = M ( b − a ) f(x)\in C[a,b],在(a,b)内可导.|f&#x27;(x)|\leq M,f(x)在(a,b)内至少一个0点.求证:|f(a)|+|f(b)|=M(b-a) f(x)C[a,b],(a,b).f(x)M,f(x)(a,b)0.f(a)+f(b)=M(ba)

解:

1. 根 据 零 点 定 理 : ∃   c ∈ ( a , b ) 使 得 f ( c ) = 0 根据零点定理:\exists\ c \in (a,b) 使得f(c)=0  c(a,b)使f(c)=0
现在有三个点了 f ( a ) , f ( c ) , f ( b ) → 使 用 两 次 拉 格 朗 日 定 理 f(a),f(c),f(b)\rightarrow 使用两次拉格朗日定理 f(a),f(c),f(b)使

2.使用两次拉格朗日
$f©-f(a)=f’(\xi_1)(c-a)\qquad (a<\xi_1<c) $
$f(b)-f©=f’(\xi_2)(b-c)\qquad (c<\xi_1<b) $
3.根据题目已知条件:$|f’(x)|\leq M $ 得


注解:
∵ ∣ f ′ ( x ) ∣ ≤ M , 一 阶 导 数 有 上 界 M , 且 ξ 1 ⊂ ( a , c ) ⊂ ( a , b ) \because |f&#x27;(x)| \leq M,一阶导数有上界M,且\xi_1 \subset (a,c) \subset (a,b) f(x)M,Mξ1(a,c)(a,b)
∴ ξ 1 可 以 直 接 代 入 上 式 ∣ f ′ ( ξ 1 ) ∣ ≤ M \therefore \xi_1可以直接代入上式|f&#x27;(\xi_1)|\leq M ξ1f(ξ1)M
根据拉格朗日中值定理: f ( c ) − f ( a ) = f ′ ( ξ 1 ) ( c − a ) f(c)-f(a)=f&#x27;(\xi_1)(c-a) f(c)f(a)=f(ξ1)(ca)
∵ f ( c ) = 0 , ∣ f ′ ( ξ 1 ) ∣ ≤ M \because f(c)=0,\qquad |f&#x27;(\xi_1)|\leq M f(c)=0,f(ξ1)M
∴ 0 − f ( a ) = ≤ M ( c − a ) \therefore 0-f(a)=\leq M(c-a) 0f(a)=M(ca)
∣ f ( a ) ∣ ≤ M ( c − a ) |f(a)|\leq M(c-a) f(a)M(ca)
同理可得: ∣ f ( b ) ∣ ≤ M ( b − c ) |f(b)|\leq M(b-c) f(b)M(bc)


∴ ∣ f ( a ) ∣ + ∣ f ( b ) ∣ = M ( b − a ) \therefore |f(a)|+|f(b)|=M(b-a) f(a)+f(b)=M(ba)

例题4: f ( x ) ∈ C [ a , b ] , ( a , b ) 内 二 阶 可 导 , 存 在 L : y = f ( x ) 连 接 A ( a , f ( a ) ) , B ( b , f ( b ) ) 的 直 线 , 交 L 于 C ( c , f ( c ) ) ( a &lt; c &lt; b ) 证 : ∃   ξ ∈ ( a , b ) 使 f ′ ′ ( ξ ) = 0 f(x)\in C[a,b],(a,b)内二阶可导,存在L:y=f(x)连接A(a,f(a)),B(b,f(b))的直线,交L于C(c,f(c))(a&lt;c&lt;b)\\证:\exists\ \xi\in(a,b) 使f&#x27;&#x27;(\xi)=0 f(x)C[a,b],(a,b),L:y=f(x)A(a,f(a)),B(b,f(b))线LC(c,f(c))(a<c<b) ξ(a,b)使f(ξ)=0

解:
  1. 3个点已经有了,直接使用两次拉格朗日

∃   ξ 1 ∈ ( a , c ) , ξ 2 ∈ ( c , b ) \large \exists\ \xi_1\in(a,c), \xi_2\in(c,b)  ξ1(a,c),ξ2(c,b)

f ′ ( ξ 1 ) = f ( c ) − f ( a ) c − a , f ′ ( ξ 2 ) = f ( b ) − f ( c ) b − c \Large f&#x27;(\xi_1)=\frac{f(c)-f(a)}{c-a},f&#x27;(\xi_2)=\frac{f(b)-f(c)}{b-c} f(ξ1)=caf(c)f(a),f(ξ2)=bcf(b)f(c)

注解:
因 为 f ′ ( ξ 1 ) 和 f ′ ( ξ 2 ) 都 是 代 表 斜 率 , 并 且 它 们 是 同 一 条 直 线 , 所 以 f ′ ( ξ 1 ) 和 f ′ ( ξ 2 ) 是 相 等 的 因为f&#x27;(\xi_1)和f&#x27;(\xi_2)都是代表斜率,并且它们是同一条直线,所以f&#x27;(\xi_1)和f&#x27;(\xi_2)是相等的 f(ξ1)f(ξ2)线f(ξ1)f(ξ2)

∵ f ′ ( ξ 1 ) = f ′ ( ξ 2 ) \because f&#x27;(\xi_1)=f&#x27;(\xi_2) f(ξ1)=f(ξ2)

∴ ∃   ξ ∈ ( ξ 1 , ξ 2 ) ⊂ ( a , b ) 使 得 f ′ ′ ( ξ ) = 0 \therefore \exists\ \xi\in(\xi_1,\xi_2) \subset(a,b) 使得f&#x27;&#x27;(\xi)=0  ξ(ξ1,ξ2)(a,b)使f(ξ)=0

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值