中值定理5-泰勒中值定理

泰勒中值定理

条件: f ( x ) 在 x = x 0 领 域 内 ( n + 1 ) f(x)在x=x_0领域内(n+1) f(x)x=x0(n+1)阶可导

结论: f ( x ) = P n ( x ) + R n ( x ) ⟶ P n ( x ) 为 主 项 , R n ( x ) 为 次 项 f(x)=P_n(x)+R_n(x) \longrightarrow P_n(x)为主项,R_n(x)为次项 f(x)=Pn(x)+Rn(x)Pn(x)Rn(x)

P n ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n \LARGE P_n(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n Pn(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2+...+n!f(n)(x0)(xx0)n

R n ( x ) = { f ( n + 1 ) ( ξ ) ( n + 1 ) ! ⟹ 拉 格 朗 日 型 预 项 o ( ( x − x 0 ) n ) ⟹ 皮 亚 诺 型 余 项 \huge R_n(x)= \begin{cases} \frac{f^{(n+1)(\xi)}}{(n+1)!} \Longrightarrow 拉格朗日型预项 \\ o((x-x_0)^n) \Longrightarrow 皮亚诺型余项 \end{cases} Rn(x)=(n+1)!f(n+1)(ξ)o((xx0)n)

麦克劳林公式

e x = 1 + x + x 2 2 ! + x 3 3 ! + . . . + + x n n ! + o ( x n ) e^x = 1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...++\frac{x^n}{n!}+o(x^n) ex=1+x+2!x2+3!x3+...++n!xn+o(xn)

sin ⁡ x = x − x 3 3 ! + x 5 5 ! + . . . + o ( x 7 ) \sin x = x -\frac{x^3}{3!}+\frac{x^5}{5!}+...+o(x^7) sinx=x3!x3+5!x5+...+o(x7)

cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! + . . . + o ( x 6 ) \cos x= 1-\frac{x^2}{2!}+\frac{x^4}{4!}+...+o(x^6) cosx=12!x2+4!x4+...+o(x6)

1 1 − x = 1 + x + x 2 + x 3 + . . . + x n + o ( x n ) \frac{1}{1-x} = 1 +x +x^2 +x^3+...+x^n+o(x^n) 1x1=1+x+x2+x3+...+xn+o(xn)

1 1 + x = 1 − x + x 2 − x 3 + . . . + ( − 1 ) n x n + o ( x n ) \frac{1}{1+x} = 1-x+x^2-x^3+...+(-1)^nx^n+o(x^n) 1+x1=1x+x2x3+...+(1)nxn+o(xn)

ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + o ( x 4 ) \ln(1+x) = x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+o(x^4) ln(1+x)=x2x2+3x34x4+o(x4)

( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + a ( a − 1 ) ( a − 2 ) 3 ! x 3 + . . . + o ( x 3 ) (1+x)^a = 1+ax+\frac{a(a-1)}{2!}x^2+\frac{a(a-1)(a-2)}{3!}x^3+...+o(x^3) (1+x)a=1+ax+2!a(a1)x2+3!a(a1)(a2)x3+...+o(x3)

使用泰勒展开公式求极限

例 题 1 : lim ⁡ x → 0 x − sin ⁡ x x 3 例题1:\underset{x\to 0}{\lim} \frac{x-\sin x}{x^3} 1x0limx3xsinx
解:
1. sin ⁡ x 展 开 到 阶 , 跟 分 母 同 阶 \sin x 展开到阶,跟分母同阶 sinx
原 式 = lim ⁡ x → 0 x − ( x − x 3 3 ! + o ( x 3 ) ) x 3 = x 3 3 ! + o ( x 3 ) x 3 原式=\underset{x \to 0}{\lim} \frac{x-(x-\frac{x^3}{3!}+o(x^3))}{x^3}=\frac{\frac{x^3}{3!}+o(x^3)}{x^3} =x0limx3x(x3!x3+o(x3))=x33!x3+o(x3)

= lim ⁡ x → 0 1 6 x 3 + o ( x 3 ) x 3 = 1 6 =\underset{x \to 0}{\lim}\frac{\frac{1}{6}x^3+o(x^3)}{x^3}=\frac{1}{6} =x0limx361x3+o(x3)=61

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值