含有两个或两个以上导数的中值问题

  1. 结论中若只含有 f ′ ( ξ ) , f ′ ( η ) f^{\prime}(\xi), f^{\prime}(\eta) f(ξ),f(η),此时先找出函数 f ( x ) f(x) f(x)的三个点,两次使用拉格朗日中值定理即可。

例题一:设 f ( x ) ∈ C [ 0 , 1 ] f(x) \in C[0,1] f(x)C[0,1],在 ( 0 , 1 ) (0,1) (0,1)内可导, f ( 0 ) = 0 , f ( 1 ) = 1 f(0)=0, f(1)=1 f(0)=0,f(1)=1,且 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上严格递增,证明:存在 ξ i ∈ ( 0 , 1 ) ( 1 ⩽ i ⩽ n ) \xi_{i} \in(0,1)(1 \leqslant i \leqslant n) ξi(0,1)(1in),使得 1 f ′ ( ξ 1 ) + ⋯ + 1 f ′ ( ξ n ) = n \frac{1}{f^{\prime}\left(\xi_{1}\right)}+\cdots+\frac{1}{f^{\prime}\left(\xi_{n}\right)}=n f(ξ1)1++f(ξn)1=n

证明:因为 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上连续,所以 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上取到最小值m和最大值M
,显然有 m ⩽ f ( 0 ) = 0 < 1 n < 2 n < ⋯ < n − 1 n < n n = f ( 1 ) ⩽ M m \leqslant f(0)=0<\frac{1}{n}<\frac{2}{n}<\cdots<\frac{n-1}{n}<\frac{n}{n}=f(1) \leqslant M mf(0)=0<n1<n2<<nn1<nn=f(1)M
又因为 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上单调增加,所以存在 0 < c 1 < c 2 < ⋯ < c n − 1 < 1 0<c_{1}<c_{2}<\cdots<c_{n-1}<1 0<c1<c2<<cn1<1,使得
f ( c 1 ) = 1 n , f ( c 2 ) = 2 n , ⋯   , f ( c n − 1 ) = n − 1 n f\left(c_{1}\right)=\frac{1}{n}, f\left(c_{2}\right)=\frac{2}{n}, \cdots, f\left(c_{n-1}\right)=\frac{n-1}{n} f(c1)=n1,f(c2)=n2,,f(cn1)=nn1
由拉格朗日中值定理,存在 ξ 1 ∈ ( 0 , c 1 ) , ξ 2 ∈ ( c 1 , c 2 ) , ⋯   , ξ n ∈ ( c n − 1 , 1 ) \xi_{1} \in\left(0, c_{1}\right), \xi_{2} \in\left(c_{1}, c_{2}\right), \cdots, \xi_{n} \in\left(c_{n-1}, 1\right) ξ1(0,c1),ξ2(c1,c2),,ξn(cn1,1),使得
{ f ( c 1 ) − f ( 0 ) = f ′ ( ξ 1 ) c 1 f ( c 2 ) − f ( c 1 ) = f ′ ( ξ 2 ) ( c 2 − c 1 ) ⋮ f ( 1 ) − f ( c n − 1 ) = f ′ ( ξ n ) ( 1 − c n − 1 ) \left\{\begin{array}{l} f\left(c_{1}\right)-f(0)=f^{\prime}\left(\xi_{1}\right) c_{1} \\ f\left(c_{2}\right)-f\left(c_{1}\right)=f^{\prime}\left(\xi_{2}\right)\left(c_{2}-c_{1}\right) \\ \vdots \\ f(1)-f\left(c_{n-1}\right)=f^{\prime}\left(\xi_{n}\right)\left(1-c_{n-1}\right) \end{array}\right. f(c1)f(0)=f(ξ1)c1f(c2)f(c1)=f(ξ2)(c2c1)f(1)f(cn1)=f(ξn)(1cn1)

1 f ′ ( ξ 1 ) = n c 1 , 1 f ′ ( ξ 2 ) = n ( c 2 − c 1 ) , ⋯   , 1 f ′ ( ξ n ) = n ( 1 − c n − 1 ) \frac{1}{f^{\prime}\left(\xi_{1}\right)}=n c_{1}, \frac{1}{f^{\prime}\left(\xi_{2}\right)}=n\left(c_{2}-c_{1}\right), \cdots, \frac{1}{f^{\prime}\left(\xi_{n}\right)}=n\left(1-c_{n-1}\right) f(ξ1)1=nc1,f(ξ2)1=n(c2c1),,f(ξn)1=n(1cn1),相加得
1 f ′ ( ξ 1 ) + 1 f ′ ( ξ 2 ) + ⋯ + 1 f ′ ( ξ n ) = n \frac{1}{f^{\prime}\left(\xi_{1}\right)}+\frac{1}{f^{\prime}\left(\xi_{2}\right)}+\cdots+\frac{1}{f^{\prime}\left(\xi_{n}\right)}=n f(ξ1)1+f(ξ2)1++f(ξn)1=n

  1. 结论中含有两个中值 ξ , η \xi, \eta ξ,η,但两个中值的项的复杂度不同

思路分析:这类问题的通常做法是,先将复杂中值的项取出,一般有两种情形,一种是复杂中值项为某函数的导数,如:复杂度为 e η [ f ′ ( η ) − f ( η ) ] e^{\eta}\left[f^{\prime}(\eta)-f(\eta)\right] eη[f(η)f(η)],该项显然为 e − x f ( x ) e^{-x} f(x) exf(x)的导数,此时使用拉格朗日中值定理;另一种情形是两个函数之商,如:复杂项为 η 2 f ′ ( η ) = f ′ ( η ) 1 / η 2 \eta^{2} f^{\prime}(\eta)=\frac{f^{\prime}(\eta)}{1 / \eta^{2}} η2f(η)=1/η2f(η),该项显然为 f ( x ) , F ( x ) = − 1 x f(x), F(x)=-\frac{1}{x} f(x),F(x)=x1两个函数的导数之商,此时使用柯西中值定理。

例题一:设 f ( x ) ∈ C [ a , b ] f(x) \in C[a, b] f(x)C[a,b],在 ( a , b ) (a,b) (a,b)内可导,且 f ( a ) = f ( b ) = 1 f(a)=f(b)=1 f(a)=f(b)=1,证明:存在 ξ , η ∈ ( a , b ) \xi, \eta \in(a, b) ξ,η(a,b),使得 e η − ξ [ f ′ ( η ) + f ( η ) ] = 1 \mathrm{e}^{\eta-\xi}\left[f^{\prime}(\eta)+f(\eta)\right]=1 eηξ[f(η)+f(η)]=1

分析:复杂中值项为 e η [ f ′ ( η ) + f ( η ) ] e^{\eta}\left[f^{\prime}(\eta)+f(\eta)\right] eη[f(η)+f(η)],该项为 e x f ( x ) e^{x} f(x) exf(x)的导数,对 e x f ( x ) e^{x} f(x) exf(x)使用拉格朗日中值定理

证明:令 φ ( x ) = e x f ( x ) \varphi(x)=\mathrm{e}^{x} f(x) φ(x)=exf(x),由拉格朗日中值定理,存在 η ∈ ( a , b ) \eta \in(a, b) η(a,b),使得 φ ( b ) − φ ( a ) b − a = φ ′ ( η ) \frac{\varphi(b)-\varphi(a)}{b-a}=\varphi^{\prime}(\eta) baφ(b)φ(a)=φ(η),整理得 e b − e a b − a = e η [ f ′ ( η ) + f ( η ) ] \frac{\mathrm{e}^{b}-\mathrm{e}^{a}}{b-a}=\mathrm{e}^{\eta}\left[f^{\prime}(\eta)+f(\eta)\right] baebea=eη[f(η)+f(η)]
h ( x ) = e x h(x)=\mathrm{e}^{x} h(x)=ex,由拉格朗日中值定理,存在 ξ ∈ ( a , b ) \xi \in(a, b) ξ(a,b),使得 h ( b ) − h ( a ) b − a = h ′ ( ξ ) \frac{h(b)-h(a)}{b-a}=h^{\prime}(\xi) bah(b)h(a)=h(ξ),即 e b − e a b − a = e ξ \frac{e^{b}-e^{a}}{b-a}=e^{\xi} baebea=eξ,于是 e η [ f ′ ( η ) + f ( η ) ] = e ξ \mathrm{e}^{\eta}\left[f^{\prime}(\eta)+f(\eta)\right]=\mathrm{e}^{\xi} eη[f(η)+f(η)]=eξ,故 e η − ε [ f ′ ( η ) + f ( η ) ] = 1 \mathrm{e}^{\eta-\varepsilon}\left[f^{\prime}(\eta)+f(\eta)\right]=1 eηε[f(η)+f(η)]=1

例题二:设 f ( x ) ∈ C [ a , b ] f(x) \in C[a, b] f(x)C[a,b],在 ( a , b ) (a,b) (a,b)内可导,证明:存在 ξ , η ∈ ( a , b ) \xi, \eta \in(a, b) ξ,η(a,b),使得
f ′ ( ξ ) = ( a + b ) f ′ ( η ) 2 η f^{\prime}(\xi)=(a+b) \frac{f^{\prime}(\eta)}{2 \eta} f(ξ)=(a+b)2ηf(η)

分析:复杂中值项为 f ′ ( η ) 2 η \frac{f^{\prime}(\eta)}{2 \eta} 2ηf(η),该项为 f ( x ) f(x) f(x) F ( x ) = x 2 F(x)=x^{2} F(x)=x2的导数之商,对 f ( x ) , F ( x ) = x 2 f(x), F(x)=x^{2} f(x),F(x)=x2使用柯西中值定理

证明:令 F ( x ) = x 2 , F ′ ( x ) = 2 x ≠ 0 F(x)=x^{2}, F^{\prime}(x)=2 x \neq 0 F(x)=x2,F(x)=2x=0,由柯西中值定理,存在 η ∈ ( a , b ) \eta \in(a, b) η(a,b),使得 f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( η ) F ′ ( η ) \frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f^{\prime}(\eta)}{F^{\prime}(\eta)} F(b)F(a)f(b)f(a)=F(η)f(η),即 f ( b ) − f ( a ) b 2 − a 2 = f ′ ( η ) 2 η \frac{f(b)-f(a)}{b^{2}-a^{2}}=\frac{f^{\prime}(\eta)}{2 \eta} b2a2f(b)f(a)=2ηf(η) f ( b ) − f ( a ) b − a = ( a + b ) f ′ ( η ) 2 η \frac{f(b)-f(a)}{b-a}=(a+b) \frac{f^{\prime}(\eta)}{2 \eta} baf(b)f(a)=(a+b)2ηf(η)
由拉格朗日中值定理,存在 ξ ∈ ( a , b ) \xi \in(a, b) ξ(a,b),使得 f ( b ) − f ( a ) b − a = f ′ ( ξ ) \frac{f(b)-f(a)}{b-a}=f^{\prime}(\xi) baf(b)f(a)=f(ξ),于是
f ′ ( ξ ) = ( a + b ) f ′ ( η ) 2 η f^{\prime}(\xi)=(a+b) \frac{f^{\prime}(\eta)}{2 \eta} f(ξ)=(a+b)2ηf(η)

例题三:设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,且 f ′ ( x ) ≠ 0 f^{\prime}(x) \neq 0 f(x)=0,证明存在 ξ , η ∈ ( a , b ) \xi, \eta \in(a, b) ξ,η(a,b),使得 f ′ ( ξ ) f ′ ( η ) = e b − e a b − a e − η \frac{f^{\prime}(\xi)}{f^{\prime}(\eta)}=\frac{\mathrm{e}^{b}-\mathrm{e}^{a}}{b-a} \mathrm{e}^{-\eta} f(η)f(ξ)=baebeaeη

分析:结论中的复杂项为 f ′ ( η ) e η \frac{f^{\prime}(\eta)}{\mathrm{e}^{\eta}} eηf(η),令 F ( x ) = e x F(x)=\mathrm{e}^{x} F(x)=ex,显然本题对 f ( x ) , F ( x ) f(x), F(x) f(x),F(x)使用柯西中值定理

证明:令 F ( x ) = e x , F ′ ( x ) = e x ≠ 0 F(x)=\mathrm{e}^{x}, F^{\prime}(x)=\mathrm{e}^{x} \neq 0 F(x)=ex,F(x)=ex=0,由柯西中值定理,存在 η ∈ ( a , b ) \eta \in(a, b) η(a,b),使得
f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( η ) F ′ ( η ) \frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f^{\prime}(\eta)}{F^{\prime}(\eta)} F(b)F(a)f(b)f(a)=F(η)f(η),即 f ( b ) − f ( a ) e b − e a = f ′ ( η ) e η \frac{f(b)-f(a)}{\mathrm{e}^{b}-\mathrm{e}^{a}}=\frac{f^{\prime}(\eta)}{\mathrm{e}^{\eta}} ebeaf(b)f(a)=eηf(η) f ( b ) − f ( a ) b − a = e b − e a b − a ⋅ f ′ ( η ) e η \frac{f(b)-f(a)}{b-a}=\frac{\mathrm{e}^{b}-\mathrm{e}^{a}}{b-a} \cdot \frac{f^{\prime}(\eta)}{\mathrm{e}^{\eta}} baf(b)f(a)=baebeaeηf(η)
由拉格朗日中值定理,存在 ξ ∈ ( a , b ) \xi \in(a, b) ξ(a,b),使得 f ′ ( ξ ) = f ( b ) − f ( a ) b − a f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a} f(ξ)=baf(b)f(a)
于是 f ′ ( ξ ) = e b − e d b − a ⋅ f ′ ( η ) e η f^{\prime}(\xi)=\frac{\mathrm{e}^{b}-\mathrm{e}^{d}}{b-a} \cdot \frac{f^{\prime}(\eta)}{\mathrm{e}^{\eta}} f(ξ)=baebedeηf(η),故 f ′ ( ξ ) f ′ ( η ) = e b − e a b − a ⋅ e − η \frac{f^{\prime}(\xi)}{f^{\prime}(\eta)}=\frac{\mathrm{e}^{b}-\mathrm{e}^{a}}{b-a} \cdot \mathrm{e}^{-\eta} f(η)f(ξ)=baebeaeη

例题四:设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导 ( a ≥ 0 ) (a \geq 0) (a0),证明:存在 ξ 1 , ξ 2 , ξ 3 ∈ ( a , b ) \xi_{1}, \xi_{2}, \xi_{3} \in(a, b) ξ1,ξ2,ξ3(a,b),使
f ′ ( ξ 1 ) = ( a + b ) f ′ ( ξ 2 ) 2 ξ 2 = ( a 2 + a b + b 2 ) f ′ ( ξ 3 ) 3 ξ 3 2 f^{\prime}\left(\xi_{1}\right)=(a+b) \frac{f^{\prime}\left(\xi_{2}\right)}{2 \xi_{2}}=\left(a^{2}+a b+b^{2}\right) \frac{f^{\prime}\left(\xi_{3}\right)}{3 \xi_{3}^{2}} f(ξ1)=(a+b)2ξ2f(ξ2)=(a2+ab+b2)3ξ32f(ξ3)
证明:令 F ( x ) = x 2 , F ′ ( x ) = 2 x ≠ 0 ( a < x < b ) F(x)=x^{2}, F^{\prime}(x)=2 x \neq 0(a<x<b) F(x)=x2,F(x)=2x=0(a<x<b),由柯西中值定理,存在 ξ 2 ∈ ( a , b ) \xi_{2} \in(a, b) ξ2(a,b),使得 f ( b ) − f ( a ) b 2 − a 2 = f ′ ( ξ 2 ) 2 ξ 2 \frac{f(b)-f(a)}{b^{2}-a^{2}}=\frac{f^{\prime}\left(\xi_{2}\right)}{2 \xi_{2}} b2a2f(b)f(a)=2ξ2f(ξ2) f ( b ) − f ( a ) b − a = ( a + b ) f ′ ( ξ 2 ) 2 ξ 2 \frac{f(b)-f(a)}{b-a}=(a+b) \frac{f^{\prime}\left(\xi_{2}\right)}{2 \xi_{2}} baf(b)f(a)=(a+b)2ξ2f(ξ2)
G ( x ) = x 3 , G ′ ( x ) = 3 x 2 ≠ 0 ( a < x < b ) G(x)=x^{3}, G^{\prime}(x)=3 x^{2} \neq 0(a<x<b) G(x)=x3,G(x)=3x2=0(a<x<b),由柯西中值定理,存在 ξ 3 ∈ ( a , b ) \xi_{3} \in(a, b) ξ3(a,b),使得 f ( b ) − f ( a ) b 3 − a 3 = f ′ ( ξ 3 ) 3 ξ 3 2 \frac{f(b)-f(a)}{b^{3}-a^{3}}=\frac{f^{\prime}\left(\xi_{3}\right)}{3 \xi_{3}^{2}} b3a3f(b)f(a)=3ξ32f(ξ3),或 f ( b ) − f ( a ) b − a = ( a 2 + a b + b 2 ) f ′ ( ξ 3 ) 3 ξ 3 2 \frac{f(b)-f(a)}{b-a}=\left(a^{2}+a b+b^{2}\right) \frac{f^{\prime}\left(\xi_{3}\right)}{3 \xi_{3}^{2}} baf(b)f(a)=(a2+ab+b2)3ξ32f(ξ3)
由拉格朗日中值定理,存在 ξ 1 ∈ ( a , b ) \xi_{1} \in(a, b) ξ1(a,b),使得 f ′ ( ξ 1 ) = f ( b ) − f ( a ) b − a f^{\prime}\left(\xi_{1}\right)=\frac{f(b)-f(a)}{b-a} f(ξ1)=baf(b)f(a),故
f ′ ( ξ 1 ) = ( a + b ) f ′ ( ξ 2 ) 2 ξ 2 = ( a 2 + a b + b 2 ) f ′ ( ξ 3 ) 3 ξ 3 2 f^{\prime}\left(\xi_{1}\right)=(a+b) \frac{f^{\prime}\left(\xi_{2}\right)}{2 \xi_{2}}=\left(a^{2}+a b+b^{2}\right) \frac{f^{\prime}\left(\xi_{3}\right)}{3 \xi_{3}^{2}} f(ξ1)=(a+b)2ξ2f(ξ2)=(a2+ab+b2)3ξ32f(ξ3)

  1. 结论中含有中值 ξ , η \xi, \eta ξ,η(不仅仅只含有 f ′ ( ξ ) , f ′ ( η ) f^{\prime}(\xi), f^{\prime}(\eta) f(ξ),f(η))两者对应的项完全对等

思路分析:该类问题一般先就 ξ \xi ξ构造一个辅助函数(还原法),再两次使用拉格朗日中值定理

例题一:设 f ( x ) ∈ [ 0 , 1 ] f(x) \in[0,1] f(x)[0,1] f ( x ) f(x) f(x) ( 0 , 1 ) (0,1) (0,1)内可导,且 f ( 0 ) = 0 , f ( 1 ) = 1 4 f(0)=0, f(1)=\frac{1}{4} f(0)=0,f(1)=41,证明:存在 ξ ∈ ( 0 , 1 2 ) , η ∈ ( 1 2 , 1 ) \xi \in\left(0, \frac{1}{2}\right), \eta \in\left(\frac{1}{2}, 1\right) ξ(0,21),η(21,1),使得
f ′ ( ξ ) + f ′ ( η ) = η − ξ f^{\prime}(\xi)+f^{\prime}(\eta)=\eta-\xi f(ξ)+f(η)=ηξ

证明:令 φ 1 ( x ) = f ( x ) + 1 2 x 2 , φ 2 ( x ) = f ( x ) − 1 2 x 2 \varphi_{1}(x)=f(x)+\frac{1}{2} x^{2}, \varphi_{2}(x)=f(x)-\frac{1}{2} x^{2} φ1(x)=f(x)+21x2,φ2(x)=f(x)21x2
由拉格朗日中值定理,存在 ξ ∈ ( 0 , 1 2 ) , η ∈ ( 1 2 , 1 ) \xi \in\left(0, \frac{1}{2}\right), \eta \in\left(\frac{1}{2}, 1\right) ξ(0,21),η(21,1),使得
φ 1 ′ ( ξ ) = φ 1 ( 1 2 ) − φ 1 ( 0 ) 1 2 − 0 = 2 [ f ( 1 2 ) + 1 8 ] \varphi_{1}^{\prime}(\xi)=\frac{\varphi_{1}\left(\frac{1}{2}\right)-\varphi_{1}(0)}{\frac{1}{2}-0}=2\left[f\left(\frac{1}{2}\right)+\frac{1}{8}\right] φ1(ξ)=210φ1(21)φ1(0)=2[f(21)+81]

φ 2 ′ ( η ) = φ 2 ( 1 ) − φ 2 ( 1 2 ) 1 − 1 2 = 2 [ f ( 1 ) − 1 2 − f ( 1 2 ) + 1 8 ] = − 2 [ f ( 1 2 ) + 1 8 ] \varphi_{2}^{\prime}(\eta)=\frac{\varphi_{2}(1)-\varphi_{2}\left(\frac{1}{2}\right)}{1-\frac{1}{2}}=2\left[f(1)-\frac{1}{2}-f\left(\frac{1}{2}\right)+\frac{1}{8}\right]=-2\left[f\left(\frac{1}{2}\right)+\frac{1}{8}\right] φ2(η)=121φ2(1)φ2(21)=2[f(1)21f(21)+81]=2[f(21)+81]

从而有 φ 1 ′ ( ξ ) + φ 2 ′ ( η ) = 0 \varphi_{1}^{\prime}(\xi)+\varphi_{2}^{\prime}(\eta)=0 φ1(ξ)+φ2(η)=0
φ 1 ′ ( ξ ) = f ′ ( ξ ) + ξ , φ 2 ′ ( η ) = f ′ ( η ) − η \varphi_{1}^{\prime}(\xi)=f^{\prime}(\xi)+\xi, \varphi_{2}^{\prime}(\eta)=f^{\prime}(\eta)-\eta φ1(ξ)=f(ξ)+ξ,φ2(η)=f(η)η
f ′ ( ξ ) + f ′ ( η ) = η − ξ f^{\prime}(\xi)+f^{\prime}(\eta)=\eta-\xi f(ξ)+f(η)=ηξ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值