- 结论中若只含有 f ′ ( ξ ) , f ′ ( η ) f^{\prime}(\xi), f^{\prime}(\eta) f′(ξ),f′(η),此时先找出函数 f ( x ) f(x) f(x)的三个点,两次使用拉格朗日中值定理即可。
例题一:设 f ( x ) ∈ C [ 0 , 1 ] f(x) \in C[0,1] f(x)∈C[0,1],在 ( 0 , 1 ) (0,1) (0,1)内可导, f ( 0 ) = 0 , f ( 1 ) = 1 f(0)=0, f(1)=1 f(0)=0,f(1)=1,且 f ( x ) f(x) f(x)在 [ 0 , 1 ] [0,1] [0,1]上严格递增,证明:存在 ξ i ∈ ( 0 , 1 ) ( 1 ⩽ i ⩽ n ) \xi_{i} \in(0,1)(1 \leqslant i \leqslant n) ξi∈(0,1)(1⩽i⩽n),使得 1 f ′ ( ξ 1 ) + ⋯ + 1 f ′ ( ξ n ) = n \frac{1}{f^{\prime}\left(\xi_{1}\right)}+\cdots+\frac{1}{f^{\prime}\left(\xi_{n}\right)}=n f′(ξ1)1+⋯+f′(ξn)1=n
证明:因为
f
(
x
)
f(x)
f(x)在
[
0
,
1
]
[0,1]
[0,1]上连续,所以
f
(
x
)
f(x)
f(x)在
[
0
,
1
]
[0,1]
[0,1]上取到最小值m和最大值M
,显然有
m
⩽
f
(
0
)
=
0
<
1
n
<
2
n
<
⋯
<
n
−
1
n
<
n
n
=
f
(
1
)
⩽
M
m \leqslant f(0)=0<\frac{1}{n}<\frac{2}{n}<\cdots<\frac{n-1}{n}<\frac{n}{n}=f(1) \leqslant M
m⩽f(0)=0<n1<n2<⋯<nn−1<nn=f(1)⩽M
又因为
f
(
x
)
f(x)
f(x)在
[
0
,
1
]
[0,1]
[0,1]上单调增加,所以存在
0
<
c
1
<
c
2
<
⋯
<
c
n
−
1
<
1
0<c_{1}<c_{2}<\cdots<c_{n-1}<1
0<c1<c2<⋯<cn−1<1,使得
f
(
c
1
)
=
1
n
,
f
(
c
2
)
=
2
n
,
⋯
,
f
(
c
n
−
1
)
=
n
−
1
n
f\left(c_{1}\right)=\frac{1}{n}, f\left(c_{2}\right)=\frac{2}{n}, \cdots, f\left(c_{n-1}\right)=\frac{n-1}{n}
f(c1)=n1,f(c2)=n2,⋯,f(cn−1)=nn−1
由拉格朗日中值定理,存在
ξ
1
∈
(
0
,
c
1
)
,
ξ
2
∈
(
c
1
,
c
2
)
,
⋯
,
ξ
n
∈
(
c
n
−
1
,
1
)
\xi_{1} \in\left(0, c_{1}\right), \xi_{2} \in\left(c_{1}, c_{2}\right), \cdots, \xi_{n} \in\left(c_{n-1}, 1\right)
ξ1∈(0,c1),ξ2∈(c1,c2),⋯,ξn∈(cn−1,1),使得
{
f
(
c
1
)
−
f
(
0
)
=
f
′
(
ξ
1
)
c
1
f
(
c
2
)
−
f
(
c
1
)
=
f
′
(
ξ
2
)
(
c
2
−
c
1
)
⋮
f
(
1
)
−
f
(
c
n
−
1
)
=
f
′
(
ξ
n
)
(
1
−
c
n
−
1
)
\left\{\begin{array}{l} f\left(c_{1}\right)-f(0)=f^{\prime}\left(\xi_{1}\right) c_{1} \\ f\left(c_{2}\right)-f\left(c_{1}\right)=f^{\prime}\left(\xi_{2}\right)\left(c_{2}-c_{1}\right) \\ \vdots \\ f(1)-f\left(c_{n-1}\right)=f^{\prime}\left(\xi_{n}\right)\left(1-c_{n-1}\right) \end{array}\right.
⎩⎪⎪⎪⎨⎪⎪⎪⎧f(c1)−f(0)=f′(ξ1)c1f(c2)−f(c1)=f′(ξ2)(c2−c1)⋮f(1)−f(cn−1)=f′(ξn)(1−cn−1)
即
1
f
′
(
ξ
1
)
=
n
c
1
,
1
f
′
(
ξ
2
)
=
n
(
c
2
−
c
1
)
,
⋯
,
1
f
′
(
ξ
n
)
=
n
(
1
−
c
n
−
1
)
\frac{1}{f^{\prime}\left(\xi_{1}\right)}=n c_{1}, \frac{1}{f^{\prime}\left(\xi_{2}\right)}=n\left(c_{2}-c_{1}\right), \cdots, \frac{1}{f^{\prime}\left(\xi_{n}\right)}=n\left(1-c_{n-1}\right)
f′(ξ1)1=nc1,f′(ξ2)1=n(c2−c1),⋯,f′(ξn)1=n(1−cn−1),相加得
1
f
′
(
ξ
1
)
+
1
f
′
(
ξ
2
)
+
⋯
+
1
f
′
(
ξ
n
)
=
n
\frac{1}{f^{\prime}\left(\xi_{1}\right)}+\frac{1}{f^{\prime}\left(\xi_{2}\right)}+\cdots+\frac{1}{f^{\prime}\left(\xi_{n}\right)}=n
f′(ξ1)1+f′(ξ2)1+⋯+f′(ξn)1=n
- 结论中含有两个中值 ξ , η \xi, \eta ξ,η,但两个中值的项的复杂度不同
思路分析:这类问题的通常做法是,先将复杂中值的项取出,一般有两种情形,一种是复杂中值项为某函数的导数,如:复杂度为 e η [ f ′ ( η ) − f ( η ) ] e^{\eta}\left[f^{\prime}(\eta)-f(\eta)\right] eη[f′(η)−f(η)],该项显然为 e − x f ( x ) e^{-x} f(x) e−xf(x)的导数,此时使用拉格朗日中值定理;另一种情形是两个函数之商,如:复杂项为 η 2 f ′ ( η ) = f ′ ( η ) 1 / η 2 \eta^{2} f^{\prime}(\eta)=\frac{f^{\prime}(\eta)}{1 / \eta^{2}} η2f′(η)=1/η2f′(η),该项显然为 f ( x ) , F ( x ) = − 1 x f(x), F(x)=-\frac{1}{x} f(x),F(x)=−x1两个函数的导数之商,此时使用柯西中值定理。
例题一:设 f ( x ) ∈ C [ a , b ] f(x) \in C[a, b] f(x)∈C[a,b],在 ( a , b ) (a,b) (a,b)内可导,且 f ( a ) = f ( b ) = 1 f(a)=f(b)=1 f(a)=f(b)=1,证明:存在 ξ , η ∈ ( a , b ) \xi, \eta \in(a, b) ξ,η∈(a,b),使得 e η − ξ [ f ′ ( η ) + f ( η ) ] = 1 \mathrm{e}^{\eta-\xi}\left[f^{\prime}(\eta)+f(\eta)\right]=1 eη−ξ[f′(η)+f(η)]=1
分析:复杂中值项为 e η [ f ′ ( η ) + f ( η ) ] e^{\eta}\left[f^{\prime}(\eta)+f(\eta)\right] eη[f′(η)+f(η)],该项为 e x f ( x ) e^{x} f(x) exf(x)的导数,对 e x f ( x ) e^{x} f(x) exf(x)使用拉格朗日中值定理
证明:令
φ
(
x
)
=
e
x
f
(
x
)
\varphi(x)=\mathrm{e}^{x} f(x)
φ(x)=exf(x),由拉格朗日中值定理,存在
η
∈
(
a
,
b
)
\eta \in(a, b)
η∈(a,b),使得
φ
(
b
)
−
φ
(
a
)
b
−
a
=
φ
′
(
η
)
\frac{\varphi(b)-\varphi(a)}{b-a}=\varphi^{\prime}(\eta)
b−aφ(b)−φ(a)=φ′(η),整理得
e
b
−
e
a
b
−
a
=
e
η
[
f
′
(
η
)
+
f
(
η
)
]
\frac{\mathrm{e}^{b}-\mathrm{e}^{a}}{b-a}=\mathrm{e}^{\eta}\left[f^{\prime}(\eta)+f(\eta)\right]
b−aeb−ea=eη[f′(η)+f(η)]
令
h
(
x
)
=
e
x
h(x)=\mathrm{e}^{x}
h(x)=ex,由拉格朗日中值定理,存在
ξ
∈
(
a
,
b
)
\xi \in(a, b)
ξ∈(a,b),使得
h
(
b
)
−
h
(
a
)
b
−
a
=
h
′
(
ξ
)
\frac{h(b)-h(a)}{b-a}=h^{\prime}(\xi)
b−ah(b)−h(a)=h′(ξ),即
e
b
−
e
a
b
−
a
=
e
ξ
\frac{e^{b}-e^{a}}{b-a}=e^{\xi}
b−aeb−ea=eξ,于是
e
η
[
f
′
(
η
)
+
f
(
η
)
]
=
e
ξ
\mathrm{e}^{\eta}\left[f^{\prime}(\eta)+f(\eta)\right]=\mathrm{e}^{\xi}
eη[f′(η)+f(η)]=eξ,故
e
η
−
ε
[
f
′
(
η
)
+
f
(
η
)
]
=
1
\mathrm{e}^{\eta-\varepsilon}\left[f^{\prime}(\eta)+f(\eta)\right]=1
eη−ε[f′(η)+f(η)]=1
例题二:设
f
(
x
)
∈
C
[
a
,
b
]
f(x) \in C[a, b]
f(x)∈C[a,b],在
(
a
,
b
)
(a,b)
(a,b)内可导,证明:存在
ξ
,
η
∈
(
a
,
b
)
\xi, \eta \in(a, b)
ξ,η∈(a,b),使得
f
′
(
ξ
)
=
(
a
+
b
)
f
′
(
η
)
2
η
f^{\prime}(\xi)=(a+b) \frac{f^{\prime}(\eta)}{2 \eta}
f′(ξ)=(a+b)2ηf′(η)
分析:复杂中值项为 f ′ ( η ) 2 η \frac{f^{\prime}(\eta)}{2 \eta} 2ηf′(η),该项为 f ( x ) f(x) f(x)与 F ( x ) = x 2 F(x)=x^{2} F(x)=x2的导数之商,对 f ( x ) , F ( x ) = x 2 f(x), F(x)=x^{2} f(x),F(x)=x2使用柯西中值定理
证明:令
F
(
x
)
=
x
2
,
F
′
(
x
)
=
2
x
≠
0
F(x)=x^{2}, F^{\prime}(x)=2 x \neq 0
F(x)=x2,F′(x)=2x=0,由柯西中值定理,存在
η
∈
(
a
,
b
)
\eta \in(a, b)
η∈(a,b),使得
f
(
b
)
−
f
(
a
)
F
(
b
)
−
F
(
a
)
=
f
′
(
η
)
F
′
(
η
)
\frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f^{\prime}(\eta)}{F^{\prime}(\eta)}
F(b)−F(a)f(b)−f(a)=F′(η)f′(η),即
f
(
b
)
−
f
(
a
)
b
2
−
a
2
=
f
′
(
η
)
2
η
\frac{f(b)-f(a)}{b^{2}-a^{2}}=\frac{f^{\prime}(\eta)}{2 \eta}
b2−a2f(b)−f(a)=2ηf′(η)或
f
(
b
)
−
f
(
a
)
b
−
a
=
(
a
+
b
)
f
′
(
η
)
2
η
\frac{f(b)-f(a)}{b-a}=(a+b) \frac{f^{\prime}(\eta)}{2 \eta}
b−af(b)−f(a)=(a+b)2ηf′(η)
由拉格朗日中值定理,存在
ξ
∈
(
a
,
b
)
\xi \in(a, b)
ξ∈(a,b),使得
f
(
b
)
−
f
(
a
)
b
−
a
=
f
′
(
ξ
)
\frac{f(b)-f(a)}{b-a}=f^{\prime}(\xi)
b−af(b)−f(a)=f′(ξ),于是
f
′
(
ξ
)
=
(
a
+
b
)
f
′
(
η
)
2
η
f^{\prime}(\xi)=(a+b) \frac{f^{\prime}(\eta)}{2 \eta}
f′(ξ)=(a+b)2ηf′(η)
例题三:设 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,且 f ′ ( x ) ≠ 0 f^{\prime}(x) \neq 0 f′(x)=0,证明存在 ξ , η ∈ ( a , b ) \xi, \eta \in(a, b) ξ,η∈(a,b),使得 f ′ ( ξ ) f ′ ( η ) = e b − e a b − a e − η \frac{f^{\prime}(\xi)}{f^{\prime}(\eta)}=\frac{\mathrm{e}^{b}-\mathrm{e}^{a}}{b-a} \mathrm{e}^{-\eta} f′(η)f′(ξ)=b−aeb−eae−η
分析:结论中的复杂项为 f ′ ( η ) e η \frac{f^{\prime}(\eta)}{\mathrm{e}^{\eta}} eηf′(η),令 F ( x ) = e x F(x)=\mathrm{e}^{x} F(x)=ex,显然本题对 f ( x ) , F ( x ) f(x), F(x) f(x),F(x)使用柯西中值定理
证明:令
F
(
x
)
=
e
x
,
F
′
(
x
)
=
e
x
≠
0
F(x)=\mathrm{e}^{x}, F^{\prime}(x)=\mathrm{e}^{x} \neq 0
F(x)=ex,F′(x)=ex=0,由柯西中值定理,存在
η
∈
(
a
,
b
)
\eta \in(a, b)
η∈(a,b),使得
f
(
b
)
−
f
(
a
)
F
(
b
)
−
F
(
a
)
=
f
′
(
η
)
F
′
(
η
)
\frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f^{\prime}(\eta)}{F^{\prime}(\eta)}
F(b)−F(a)f(b)−f(a)=F′(η)f′(η),即
f
(
b
)
−
f
(
a
)
e
b
−
e
a
=
f
′
(
η
)
e
η
\frac{f(b)-f(a)}{\mathrm{e}^{b}-\mathrm{e}^{a}}=\frac{f^{\prime}(\eta)}{\mathrm{e}^{\eta}}
eb−eaf(b)−f(a)=eηf′(η)或
f
(
b
)
−
f
(
a
)
b
−
a
=
e
b
−
e
a
b
−
a
⋅
f
′
(
η
)
e
η
\frac{f(b)-f(a)}{b-a}=\frac{\mathrm{e}^{b}-\mathrm{e}^{a}}{b-a} \cdot \frac{f^{\prime}(\eta)}{\mathrm{e}^{\eta}}
b−af(b)−f(a)=b−aeb−ea⋅eηf′(η)
由拉格朗日中值定理,存在
ξ
∈
(
a
,
b
)
\xi \in(a, b)
ξ∈(a,b),使得
f
′
(
ξ
)
=
f
(
b
)
−
f
(
a
)
b
−
a
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}
f′(ξ)=b−af(b)−f(a)
于是
f
′
(
ξ
)
=
e
b
−
e
d
b
−
a
⋅
f
′
(
η
)
e
η
f^{\prime}(\xi)=\frac{\mathrm{e}^{b}-\mathrm{e}^{d}}{b-a} \cdot \frac{f^{\prime}(\eta)}{\mathrm{e}^{\eta}}
f′(ξ)=b−aeb−ed⋅eηf′(η),故
f
′
(
ξ
)
f
′
(
η
)
=
e
b
−
e
a
b
−
a
⋅
e
−
η
\frac{f^{\prime}(\xi)}{f^{\prime}(\eta)}=\frac{\mathrm{e}^{b}-\mathrm{e}^{a}}{b-a} \cdot \mathrm{e}^{-\eta}
f′(η)f′(ξ)=b−aeb−ea⋅e−η
例题四:设
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上连续,在
(
a
,
b
)
(a,b)
(a,b)内可导
(
a
≥
0
)
(a \geq 0)
(a≥0),证明:存在
ξ
1
,
ξ
2
,
ξ
3
∈
(
a
,
b
)
\xi_{1}, \xi_{2}, \xi_{3} \in(a, b)
ξ1,ξ2,ξ3∈(a,b),使
f
′
(
ξ
1
)
=
(
a
+
b
)
f
′
(
ξ
2
)
2
ξ
2
=
(
a
2
+
a
b
+
b
2
)
f
′
(
ξ
3
)
3
ξ
3
2
f^{\prime}\left(\xi_{1}\right)=(a+b) \frac{f^{\prime}\left(\xi_{2}\right)}{2 \xi_{2}}=\left(a^{2}+a b+b^{2}\right) \frac{f^{\prime}\left(\xi_{3}\right)}{3 \xi_{3}^{2}}
f′(ξ1)=(a+b)2ξ2f′(ξ2)=(a2+ab+b2)3ξ32f′(ξ3)
证明:令
F
(
x
)
=
x
2
,
F
′
(
x
)
=
2
x
≠
0
(
a
<
x
<
b
)
F(x)=x^{2}, F^{\prime}(x)=2 x \neq 0(a<x<b)
F(x)=x2,F′(x)=2x=0(a<x<b),由柯西中值定理,存在
ξ
2
∈
(
a
,
b
)
\xi_{2} \in(a, b)
ξ2∈(a,b),使得
f
(
b
)
−
f
(
a
)
b
2
−
a
2
=
f
′
(
ξ
2
)
2
ξ
2
\frac{f(b)-f(a)}{b^{2}-a^{2}}=\frac{f^{\prime}\left(\xi_{2}\right)}{2 \xi_{2}}
b2−a2f(b)−f(a)=2ξ2f′(ξ2)或
f
(
b
)
−
f
(
a
)
b
−
a
=
(
a
+
b
)
f
′
(
ξ
2
)
2
ξ
2
\frac{f(b)-f(a)}{b-a}=(a+b) \frac{f^{\prime}\left(\xi_{2}\right)}{2 \xi_{2}}
b−af(b)−f(a)=(a+b)2ξ2f′(ξ2)
令
G
(
x
)
=
x
3
,
G
′
(
x
)
=
3
x
2
≠
0
(
a
<
x
<
b
)
G(x)=x^{3}, G^{\prime}(x)=3 x^{2} \neq 0(a<x<b)
G(x)=x3,G′(x)=3x2=0(a<x<b),由柯西中值定理,存在
ξ
3
∈
(
a
,
b
)
\xi_{3} \in(a, b)
ξ3∈(a,b),使得
f
(
b
)
−
f
(
a
)
b
3
−
a
3
=
f
′
(
ξ
3
)
3
ξ
3
2
\frac{f(b)-f(a)}{b^{3}-a^{3}}=\frac{f^{\prime}\left(\xi_{3}\right)}{3 \xi_{3}^{2}}
b3−a3f(b)−f(a)=3ξ32f′(ξ3),或
f
(
b
)
−
f
(
a
)
b
−
a
=
(
a
2
+
a
b
+
b
2
)
f
′
(
ξ
3
)
3
ξ
3
2
\frac{f(b)-f(a)}{b-a}=\left(a^{2}+a b+b^{2}\right) \frac{f^{\prime}\left(\xi_{3}\right)}{3 \xi_{3}^{2}}
b−af(b)−f(a)=(a2+ab+b2)3ξ32f′(ξ3)
由拉格朗日中值定理,存在
ξ
1
∈
(
a
,
b
)
\xi_{1} \in(a, b)
ξ1∈(a,b),使得
f
′
(
ξ
1
)
=
f
(
b
)
−
f
(
a
)
b
−
a
f^{\prime}\left(\xi_{1}\right)=\frac{f(b)-f(a)}{b-a}
f′(ξ1)=b−af(b)−f(a),故
f
′
(
ξ
1
)
=
(
a
+
b
)
f
′
(
ξ
2
)
2
ξ
2
=
(
a
2
+
a
b
+
b
2
)
f
′
(
ξ
3
)
3
ξ
3
2
f^{\prime}\left(\xi_{1}\right)=(a+b) \frac{f^{\prime}\left(\xi_{2}\right)}{2 \xi_{2}}=\left(a^{2}+a b+b^{2}\right) \frac{f^{\prime}\left(\xi_{3}\right)}{3 \xi_{3}^{2}}
f′(ξ1)=(a+b)2ξ2f′(ξ2)=(a2+ab+b2)3ξ32f′(ξ3)
- 结论中含有中值 ξ , η \xi, \eta ξ,η(不仅仅只含有 f ′ ( ξ ) , f ′ ( η ) f^{\prime}(\xi), f^{\prime}(\eta) f′(ξ),f′(η))两者对应的项完全对等
思路分析:该类问题一般先就 ξ \xi ξ构造一个辅助函数(还原法),再两次使用拉格朗日中值定理
例题一:设
f
(
x
)
∈
[
0
,
1
]
f(x) \in[0,1]
f(x)∈[0,1],
f
(
x
)
f(x)
f(x)在
(
0
,
1
)
(0,1)
(0,1)内可导,且
f
(
0
)
=
0
,
f
(
1
)
=
1
4
f(0)=0, f(1)=\frac{1}{4}
f(0)=0,f(1)=41,证明:存在
ξ
∈
(
0
,
1
2
)
,
η
∈
(
1
2
,
1
)
\xi \in\left(0, \frac{1}{2}\right), \eta \in\left(\frac{1}{2}, 1\right)
ξ∈(0,21),η∈(21,1),使得
f
′
(
ξ
)
+
f
′
(
η
)
=
η
−
ξ
f^{\prime}(\xi)+f^{\prime}(\eta)=\eta-\xi
f′(ξ)+f′(η)=η−ξ
证明:令
φ
1
(
x
)
=
f
(
x
)
+
1
2
x
2
,
φ
2
(
x
)
=
f
(
x
)
−
1
2
x
2
\varphi_{1}(x)=f(x)+\frac{1}{2} x^{2}, \varphi_{2}(x)=f(x)-\frac{1}{2} x^{2}
φ1(x)=f(x)+21x2,φ2(x)=f(x)−21x2
由拉格朗日中值定理,存在
ξ
∈
(
0
,
1
2
)
,
η
∈
(
1
2
,
1
)
\xi \in\left(0, \frac{1}{2}\right), \eta \in\left(\frac{1}{2}, 1\right)
ξ∈(0,21),η∈(21,1),使得
φ
1
′
(
ξ
)
=
φ
1
(
1
2
)
−
φ
1
(
0
)
1
2
−
0
=
2
[
f
(
1
2
)
+
1
8
]
\varphi_{1}^{\prime}(\xi)=\frac{\varphi_{1}\left(\frac{1}{2}\right)-\varphi_{1}(0)}{\frac{1}{2}-0}=2\left[f\left(\frac{1}{2}\right)+\frac{1}{8}\right]
φ1′(ξ)=21−0φ1(21)−φ1(0)=2[f(21)+81]
φ 2 ′ ( η ) = φ 2 ( 1 ) − φ 2 ( 1 2 ) 1 − 1 2 = 2 [ f ( 1 ) − 1 2 − f ( 1 2 ) + 1 8 ] = − 2 [ f ( 1 2 ) + 1 8 ] \varphi_{2}^{\prime}(\eta)=\frac{\varphi_{2}(1)-\varphi_{2}\left(\frac{1}{2}\right)}{1-\frac{1}{2}}=2\left[f(1)-\frac{1}{2}-f\left(\frac{1}{2}\right)+\frac{1}{8}\right]=-2\left[f\left(\frac{1}{2}\right)+\frac{1}{8}\right] φ2′(η)=1−21φ2(1)−φ2(21)=2[f(1)−21−f(21)+81]=−2[f(21)+81]
从而有
φ
1
′
(
ξ
)
+
φ
2
′
(
η
)
=
0
\varphi_{1}^{\prime}(\xi)+\varphi_{2}^{\prime}(\eta)=0
φ1′(ξ)+φ2′(η)=0
而
φ
1
′
(
ξ
)
=
f
′
(
ξ
)
+
ξ
,
φ
2
′
(
η
)
=
f
′
(
η
)
−
η
\varphi_{1}^{\prime}(\xi)=f^{\prime}(\xi)+\xi, \varphi_{2}^{\prime}(\eta)=f^{\prime}(\eta)-\eta
φ1′(ξ)=f′(ξ)+ξ,φ2′(η)=f′(η)−η
故
f
′
(
ξ
)
+
f
′
(
η
)
=
η
−
ξ
f^{\prime}(\xi)+f^{\prime}(\eta)=\eta-\xi
f′(ξ)+f′(η)=η−ξ