三大微分中值定理及泰勒中值定理证明

本文概述了Fermat引理和三大微分中值定理(罗尔、拉格朗日和柯西),重点介绍了泰勒中值定理的背景、规范表述以及Peano和Lagrange余项。深入解析了数学分析中的核心概念,并提供相关证明思路和参考资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

0.Fermat引理

1.三大微分中值定理

 1.1罗尔中值定理

 1.2拉格朗日中值定理

 1.3柯西中值定理

2.泰勒中值定理

 2.1问题背景

 2.2规范表述

 2.3余项

2.3.1Peano余项

2.3.2Lagrange余项

 3.参考资料


证明逻辑

0.Fermat引理

 1.三大微分中值定理

 1.1罗尔中值定理

 1.2拉格朗日中值定理

 1.3柯西中值定理

2.泰勒中值定理

 2.1问题背景

 

 2.2规范表述

 2.3余项

2.3.1Peano余项

2.3.2Lagrange余项

 3.参考资料

[1]陈纪修. 数学分析(上)[M]. 高等教育出版社, 2004.

[2]知乎深入浅出理解泰勒展开式

 以上借鉴的均为证明思路。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值