中值定理、不等式与零点问题

中值定理、不等式与零点问题

知识点

费马定理

f(x)x=x0U(x0)f(x0)f(x).f(x0) 设 f ( x ) 在 x = x 0 的 某 邻 域 U ( x 0 ) 内 有 定 义 , f ( x 0 ) 是 f ( x ) 的 一 个 极 值 . 又 设 f ′ ( x 0 ) 存 在

f(x0)=0 则 有 f ′ ( x 0 ) = 0

罗尔定理

f(x)[a,b],(a,b)f(a)=f(b) 设 f ( x ) 在 [ a , b ] 上 连 续 , 在 ( a , b ) 内 可 导 , 又 设 f ( a ) = f ( b )

ξ(a,b)使f(ξ)=0 则 存 在 ξ ∈ ( a , b ) 使 f ′ ( ξ ) = 0

拉格朗日中值定理

f(x)[a,b],(a,b) 设 f ( x ) 在 [ a , b ] 上 连 续 , 在 ( a , b ) 内 可 导

ξ(a,b)使f(b)f(a)=f(ξ)(ba) 则 至 少 存 在 一 点 ξ ∈ ( a , b ) 使 f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a )

柯西中值定理

f(x),g(x)[a,b],(a,b) 设 f ( x ) , g ( x ) 在 [ a , b ] 上 连 续 , 在 ( a , b ) 内 可 导

g(x)0 g ′ ( x ) ≠ 0

ξ(a,b)使f(b)f(a)g(b)g(a)=f(ξ)g(ξ) 则 至 少 存 在 一 点 ξ ∈ ( a , b ) 使 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ( ξ ) g ( ξ )

泰勒定理

f(x)[a,b]n,(a,b)n+1, 设 f ( x ) 在 [ a , b ] 上 有 n 阶 连 续 导 数 , 在 ( a , b ) 内 有 n + 1 阶 导 数 ,

x0[a,b],x[a,b],ξx0x x 0 ∈ [ a , b ] , x ∈ [ a , b ] 是 任 意 两 点 , 则 至 少 存 在 一 个 ξ 介 于 x 0 和 x 之 间

使f(x)=f(x0)+f(x0)1!(xx0)+f(x0)2!(xx0)2+...+ 使 得 f ( x ) = f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + f ″ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . +

f(n)(x0)n!(xx0)n+Rn(x),Rn(x)=f(n+1)(ξ)(n+1)!(xx0)n+1 f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) , 其 中 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1

RnLangrange R n 称 为 L a n g r a n g e 型 余 项

Peanoo((xx0)n),(a,b)n P e a n o 型 余 项 为 o ( ( x − x 0 ) n ) , 条 件 改 为 ( a , b ) 上 n 阶 可 导 即 可

LangrangePeano
条件存在n+1阶导数
余项 Rn(x)=f(n+1)(ξ)(n+1)!(xx0)n+1 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1
用途用于区间[a,b]上

例题

例题1

x>0,y>0,lnxlny<xaax 设 x > 0 , y > 0 , 证 明 l n x − l n y < x − a a x

例题2

0<x<+,(1+1x)x(1+x)1x4,x=1 设 0 < x < + ∞ , 证 明 ( 1 + 1 x ) x ( 1 + x ) 1 x ≤ 4 , 当 且 仅 当 x = 1 时 等 号 成 立

例题3

f(x)[a,b](a,b)f(a)=f(b)=0,f(x)(a,b) 设 f ( x ) 在 [ a , b ] 上 连 续 , 在 ( a , b ) 内 可 导 , f ( a ) = f ( b ) = 0 , 且 f ′ ( x ) 在 ( a , b ) 内 严 格 单 调 递 增

(a,b)f(x)<0 证 明 在 ( a , b ) 内 f ( x ) < 0

例题4

f(x)(a,b)f(x)<0.:(a,b) 设 f ( x ) 在 区 间 ( a , b ) 内 存 在 二 阶 导 数 , 且 f ″ ( x ) < 0. 试 证 明 : 对 于 ( a , b ) 内 的 任 意 两 个 不 同 的

x1x2,s+t=1,0<s<1st,f(sx1+tx2)>sf(x1)+tf(x2) x 1 与 x 2 , 以 及 满 足 s + t = 1 , 0 < s < 1 的 两 个 整 数 s 与 t , 均 有 f ( s x 1 + t x 2 ) > s f ( x 1 ) + t f ( x 2 )

例题5

f(x)1.[0,1]2.(0,1)3.xi(0,1) 设 f ( x ) 满 足 1. 在 [ 0 , 1 ] 上 连 续 , 2. 在 ( 0 , 1 ) 内 可 导 , 3. 有 点 x i ∈ ( 0 , 1 ) 及

pi0<pi<1,(i=1,...,n),i=1npi=1,i=1npif(xi)=1,f(1)=1 常 数 p i 满 足 0 < p i < 1 , ( i = 1 , . . . , n ) , 并 且 ∑ i = 1 n p i = 1 , ∑ i = 1 n p i f ( x i ) = 1 , f ( 1 ) = 1

ξ(0,1),使f(ξ)=0 试 证 明 至 少 存 在 一 点 ξ ∈ ( 0 , 1 ) , 使 f ′ ( ξ ) = 0

例题6

f(x)[0,1],(0,1),f(0)=0,f(1)=1,10f(x)dx=2 f ( x ) 在 [ 0 , 1 ] 上 连 续 , ( 0 , 1 ) 内 可 导 , f ( 0 ) = 0 , f ( 1 ) = 1 , ∫ 0 1 f ( x ) d x = 2

ξ(0,1),使f(ξ)=0 证 明 : 至 少 存 在 一 点 ξ ∈ ( 0 , 1 ) , 使 f ′ ( ξ ) = 0

例题7

f(x)[a,b]f(a)f(b)<0. 设 f ( x ) 在 [ a , b ] 上 可 导 , 且 f ′ ( a ) f ′ ( b ) < 0 .

ξ(a,b)使f(ξ)=0 试 证 明 至 少 存 在 一 点 ξ ∈ ( a , b ) 使 f ′ ( ξ ) = 0

例题8

f(x)g(x)[a,b]ϕ(x)=g(x)baf(x)dxf(x)bag(x)dx 设 f ( x ) 与 g ( x ) 在 区 间 [ a , b ] 上 连 续 , 并 设 ϕ ( x ) = g ( x ) ∫ a b f ( x ) d x − f ( x ) ∫ a b g ( x ) d x

ξ(a,b)使ϕ(ξ)=0 试 证 明 存 在 ξ ∈ ( a , b ) 使 ϕ ( ξ ) = 0

例题9

f(x)[0,1](0,1)f(1)=2f(0). 设 f ( x ) 在 [ 0 , 1 ] 上 连 续 , 在 ( 0 , 1 ) 内 可 导 , f ( 1 ) = 2 f ( 0 ) .

ξ(0,1)使(1+ξ)f(ξ)=f(ξ) 试 证 明 至 少 存 在 一 点 ξ ∈ ( 0 , 1 ) 使 ( 1 + ξ ) f ′ ( ξ ) = f ( ξ )

例题10

f(x)[0,1](0,1)f(0)=0,f(1)=1,a>0. 设 f ( x ) 在 [ 0 , 1 ] 上 连 续 , 在 ( 0 , 1 ) 内 可 导 , 且 f ( 0 ) = 0 , f ( 1 ) = 1 , 常 数 a > 0. 证 明

(1)ξ(0,1),使f(ξ)=aa+b ( 1 ) 存 在 ξ ∈ ( 0 , 1 ) , 使 f ( ξ ) = a a + b

(2)η,ζ(0,1),η zeta,使af(η)+bf(ζ)=a+b ( 2 ) 存 在 η , ζ ∈ ( 0 , 1 ) , η ≠   z e t a , 使 a f ′ ( η ) + b f ′ ( ζ ) = a + b

例题11

a>0,a线y=eax线y=x2 设 常 数 a > 0 , 讨 论 a 的 值 , 确 定 曲 线 y = e a x 与 曲 线 y = x 2 在 第 一 象 限 中 交 点 的 个 数

例题12

f(x)=xe2x2xcosx,(,+) 设 f ( x ) = x e 2 x − 2 x − c o s x , 讨 论 它 在 区 间 ( − ∞ , + ∞ ) 上 零 点 的 个 数

例题13

f(x)[a,b](a,b) 设 f ( x ) 在 [ a , b ] 上 连 续 , 在 ( a , b ) 内 可 导 , 并 且 不 是 一 次 式

ξ(a,b)使|f(ξ)|>|f(b)f(a)ba| 证 明 至 少 存 在 一 点 ξ ∈ ( a , b ) 使 | f ′ ( ξ ) | > | f ( b ) − f ( a ) b − a |

例题14

f(x)[0,1](0,1)f(0)=f(1)=0,max[0,1]f(x)=2 设 f ( x ) 在 [ 0 , 1 ] 上 连 续 , 在 ( 0 , 1 ) 内 存 在 二 阶 导 数 , 并 设 f ( 0 ) = f ( 1 ) = 0 , max [ 0 , 1 ] f ( x ) = 2

ξ(0,1),使f(ξ)16 证 明 存 在 ξ ∈ ( 0 , 1 ) , 使 f ″ ( ξ ) ≤ − 16

例题15

limx>0tan(tanx)sin(sinx)xsinx 求 lim x − > 0 t a n ( t a n x ) − s i n ( s i n x ) x − s i n x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值