RCNN系列(R-CNN、Fast-RCNN、Faster-RCNN、Mask-RCNN)

本文详细介绍了RCNN系列(R-CNN、Fast-RCNN、Faster-RCNN、Mask-RCNN)在物体检测领域的应用和发展,讨论了各个阶段的关键技术和优化,包括候选区域提出、特征提取、分类和回归等,并探讨了从非端到端到完全端到端的演进过程。
摘要由CSDN通过智能技术生成

摘要:物体检测(object detection)是计算机视觉非常重要的一个领域。在深度学习出现之前,传统方法始终无法处理好物体检测问题,在深度学习方法引入之后,物体检测领域发生了翻天覆地的变化。最著名的是RCNN系列,另外还有YOLO、SSD。这篇文章首先介绍RCNN系列。

关键字:深度学习, 物体检测, RCNN


本文是我旧博客中的博文,在CSDN图片显示不正常,请移步旧博客查看:https://imlogm.github.io/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/rcnn/


1. 前言

物体检测(object detection)是计算机视觉非常重要的一个领域。在深度学习出现之前,传统方法始终无法处理好物体检测问题,在深度学习方法引入之后,物体检测领域发生了翻天覆地的变化。最著名的是RCNN系列,另外还有YOLO、SSD。这篇文章首先介绍RCNN系列。

网上关于RCNN系列介绍的文章非常多,比如基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN-冠军的试练的博客就用非常简洁明了的语言介绍了整个系列的诞生和演变过程。

如果你不在意具体的实现细节的话,上面链接中的文章就已经足够了。下面贴出的文章将更加深入实现细节,我会在每篇文章之后写上自己阅读时想到的问题,也许你们也会与我有同样的问题。

2. R-CNN

RCNN-将CNN引入目标检测的开山之作-晓雷的文章

RCNN的过程分4个阶段:

  1. 候选区域提出阶段(Proposal):采用selective-search方法,从一幅图像生成1K~2K个候选区域;
  2. 特征提取:对每个候选区域,使用CNN进行特征提取;
  3. 分类:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值