摘要:物体检测(object detection)是计算机视觉非常重要的一个领域。在深度学习出现之前,传统方法始终无法处理好物体检测问题,在深度学习方法引入之后,物体检测领域发生了翻天覆地的变化。最著名的是RCNN系列,另外还有YOLO、SSD。这篇文章首先介绍RCNN系列。
关键字:深度学习, 物体检测, RCNN
本文是我旧博客中的博文,在CSDN图片显示不正常,请移步旧博客查看:
https://imlogm.github.io/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/rcnn/
1. 前言
物体检测(object detection)是计算机视觉非常重要的一个领域。在深度学习出现之前,传统方法始终无法处理好物体检测问题,在深度学习方法引入之后,物体检测领域发生了翻天覆地的变化。最著名的是RCNN系列,另外还有YOLO、SSD。这篇文章首先介绍RCNN系列。
网上关于RCNN系列介绍的文章非常多,比如基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN-冠军的试练的博客就用非常简洁明了的语言介绍了整个系列的诞生和演变过程。
如果你不在意具体的实现细节的话,上面链接中的文章就已经足够了。下面贴出的文章将更加深入实现细节,我会在每篇文章之后写上自己阅读时想到的问题,也许你们也会与我有同样的问题。
2. R-CNN
RCNN的过程分4个阶段:
- 候选区域提出阶段(Proposal):采用selective-search方法,从一幅图像生成1K~2K个候选区域;
- 特征提取:对每个候选区域,使用CNN进行特征提取;
- 分类: